Initial commit
This commit is contained in:
commit
9b5b99afda
702
README
Normal file
702
README
Normal file
@ -0,0 +1,702 @@
|
||||
Password Analysis and Cracking Kit by Peter Kacherginsky (iphelix)
|
||||
==================================================================
|
||||
|
||||
PACK (Password Analysis and Cracking Toolkit) is a collection of utilities developed to aid in analysis of password lists and enhancing cracking of passwords using smart rule generation. It can be used to reverse word mangling rules, generate source words and optimize password masks for the Hashcat family of tools.
|
||||
|
||||
NOTE: The toolkit itself is not able to crack passwords, but instead designed to make operation of password crackers more efficient.
|
||||
|
||||
Rules Analysis
|
||||
==================
|
||||
|
||||
`rulegen.py` implements password analysis and rule generation for the Hashcat password cracker as described in the [Automatic Password Rule Analysis and Generation](http://thesprawl.org/research/automatic-password-rule-analysis-generation/) paper. Please review this document for detailed discussion on the theory of rule analysis and generation.
|
||||
|
||||
Reversing source words and word mangling rules from already cracked passwords can be very effective in performing attacks against still encrypted hashes. By continuously recycling/expanding generated rules and words you may be able to crack a greater number of passwords.
|
||||
|
||||
There are several prerequisites for effective use of `rulegen.py`. The tool utilizes Enchant spell-checking library to interface with a number of spell-checking engines such as Aspell, MySpell, etc. You must install these tools prior to the tool use. It is also critical to install dictionaries for whatever spell-checking engine you end up using (alternatively it is possible to use a custom wordlist). You may also need to install Enchant if it is not already installed on your system. At last, I have bundled PyEnchant for convenience which should interface directly with Enchant's shared libraries; however, should there be any issues, simply remove the bundled 'enchant' directory and install PyEnchant for your distribution.
|
||||
|
||||
NOTE: Tested and works by default on Backtrack 5 R3
|
||||
|
||||
For additional details on specific Hashcat rule syntax see [Hashcat Rule Based Attack](http://hashcat.net/wiki/doku.php?id=rule_based_attack).
|
||||
|
||||
Analyzing a Single Password
|
||||
-------------------------------
|
||||
|
||||
The most basic use of `rulegen.py` involves analysis of a single password to automatically detect rules. Let's detect rules and a source word used to generate a sample password `P@55w0rd123`:
|
||||
|
||||
$ python rulegen.py --verbose --password P@55w0rd123
|
||||
_
|
||||
RuleGen 0.0.1 | |
|
||||
_ __ __ _ ___| | _
|
||||
| '_ \ / _` |/ __| |/ /
|
||||
| |_) | (_| | (__| <
|
||||
| .__/ \__,_|\___|_|\_\
|
||||
| |
|
||||
|_| iphelix@thesprawl.org
|
||||
|
||||
|
||||
[*] Using Enchant 'aspell' module. For best results please install
|
||||
'aspell' module language dictionaries.
|
||||
[*] Saving rules to analysis.rule
|
||||
[*] Saving words to analysis.word
|
||||
[*] Press Ctrl-C to end execution and generate statistical analysis.
|
||||
[*] Analyzing password: P@55w0rd123
|
||||
[+] Password => sa@ ss5 so0 $1 $2 $3 => P@55w0rd123
|
||||
[*] Finished analysis in 0.00 seconds
|
||||
|
||||
There are several flags that we have used for this example:
|
||||
|
||||
* --password - specifies a single password to analyze.
|
||||
* --verbose - prints out verbose information such as generated rules and performance statistics.
|
||||
|
||||
As noted in the program output, generated rules and source words were saved in `analysis.rule` and `analysis.word` files respectively:
|
||||
|
||||
$ cat analysis.rule
|
||||
sa@ ss5 so0 $1 $2 $3
|
||||
$ cat analysis.word
|
||||
Password
|
||||
|
||||
Notice that these two files contain duplicate data. This will come in handy once you start processing large password lists and perform statistical analysis on generated words.
|
||||
|
||||
Processing password files is covered in a section below; however, let's first discuss some of the available fine tuning options using a single password as an example.
|
||||
|
||||
Specifying output basename
|
||||
------------------------------
|
||||
|
||||
`rulegen.py` saves output files using the 'analysis' basename by default. You can change file basename with the `--basename` flag as follows:
|
||||
|
||||
$ python rulegen.py --verbose --basename test --password P@55w0rd123
|
||||
_
|
||||
RuleGen 0.0.1 | |
|
||||
_ __ __ _ ___| | _
|
||||
| '_ \ / _` |/ __| |/ /
|
||||
| |_) | (_| | (__| <
|
||||
| .__/ \__,_|\___|_|\_\
|
||||
| |
|
||||
|_| iphelix@thesprawl.org
|
||||
|
||||
|
||||
[*] Using Enchant 'aspell' module. For best results please install
|
||||
'aspell' module language dictionaries.
|
||||
[*] Saving rules to test.rule
|
||||
[*] Saving words to test.word
|
||||
...
|
||||
|
||||
Spell-checking provider
|
||||
---------------------------
|
||||
|
||||
Notice that we are using the `aspell` Enchant module for source word detection. The exact spell-checking engine can be changed using the `--provider` flag as follows:
|
||||
|
||||
$ python rulegen.py --verbose --provider myspell --password P@55w0rd123
|
||||
_
|
||||
RuleGen 0.0.1 | |
|
||||
_ __ __ _ ___| | _
|
||||
| '_ \ / _` |/ __| |/ /
|
||||
| |_) | (_| | (__| <
|
||||
| .__/ \__,_|\___|_|\_\
|
||||
| |
|
||||
|_| iphelix@thesprawl.org
|
||||
|
||||
|
||||
[*] Using Enchant 'myspell' module. For best results please install
|
||||
'myspell' module language dictionaries.
|
||||
...
|
||||
|
||||
NOTE: Provider engine priority can be specified using a comma-separated list (e.g. --provider aspell,myspell).
|
||||
|
||||
Forcing source word
|
||||
-----------------------
|
||||
|
||||
The use of the source word detection engine can be completely disabled by specifying a source word with the `--word` flag:
|
||||
|
||||
$ python rulegen.py -q --verbose --word word --password P@55w0rd123
|
||||
[*] Analyzing password: P@55w0rd123
|
||||
[+] word => ^5 ^5 ^@ ^P so0 $1 $2 $3 => P@55w0rd123
|
||||
[*] Finished analysis in 0.00 seconds
|
||||
|
||||
By specifying different source words you can have a lot of fun experimenting with the rule generation engine.
|
||||
|
||||
Defining Custom Dictionary
|
||||
------------------------------
|
||||
|
||||
Inevitably you will come across a point where generating rules using the standard spelling-engine wordlist is no longer sufficient. You can specify a custom wordlist using the `--wordlist` flag. This is particularly useful when reusing source words from a previous analysis session:
|
||||
|
||||
$ python rulegen.py -q --verbose --wordlist rockyou-top100.word --password ap55w0rd
|
||||
[*] Using Enchant 'Personal Wordlist' module. For best results please install
|
||||
'Personal Wordlist' module language dictionaries.
|
||||
[*] Analyzing password: ap55w0rd
|
||||
[!] password => {rule length suboptimal: 5 (3)} => ap55w0rd
|
||||
[!] password => {rule length suboptimal: 5 (3)} => ap55w0rd
|
||||
[!] password => {rule length suboptimal: 5 (3)} => ap55w0rd
|
||||
[!] password => {rule length suboptimal: 5 (3)} => ap55w0rd
|
||||
[!] password => {rule length suboptimal: 4 (3)} => ap55w0rd
|
||||
[!] password => {rule length suboptimal: 4 (3)} => ap55w0rd
|
||||
[+] password => k ss5 o50 => ap55w0rd
|
||||
[*] Finished analysis in 0.00 seconds
|
||||
|
||||
Notice that there were multiple valid rules to generate the password `ap55w0rd`; however, only the most optimal rule (based on total rule count) was selected. There may be multiple "optimal" rules produced as long as they all have the same rule length.
|
||||
|
||||
Generating Suboptimal Rules and Words
|
||||
-----------------------------------------
|
||||
|
||||
While `rulegen.py` attempts to generate and record only the best source words and passwords, there may be cases when you are interested in more results. Use `--morewords` and `--morerules` flags to generate words and rules which may exceed optimal edit distance:
|
||||
|
||||
$ python rulegen.py -q --verbose --password \$m0n3y\$ --morerules --morewords
|
||||
[*] Using Enchant 'aspell' module. For best results please install
|
||||
'aspell' module language dictionaries.
|
||||
[*] Analyzing password: $m0n3y$
|
||||
[+] money => ^$ so0 se3 $$ => $m0n3y$
|
||||
[+] Mooney => sM$ o1m so0 se3 $$ => $m0n3y$
|
||||
[+] mine => ^$ si0 se3 $y $$ => $m0n3y$
|
||||
[+] mine => ^$ si0 i43 o5y $$ => $m0n3y$
|
||||
[+] mine => ^$ si0 i43 i5y o6$ => $m0n3y$
|
||||
[+] Monet => sM$ o1m i20 se3 o5y $$ => $m0n3y$
|
||||
[+] Monet => sM$ i1m so0 se3 o5y $$ => $m0n3y$
|
||||
[+] Monet => ^$ l so0 se3 o5y $$ => $m0n3y$
|
||||
[+] Monet => sM$ o1m i20 se3 i5y o6$ => $m0n3y$
|
||||
[+] Monet => sM$ i1m so0 se3 i5y o6$ => $m0n3y$
|
||||
[+] Monet => ^$ l so0 se3 i5y o6$ => $m0n3y$
|
||||
[+] Monet => sM$ o1m i20 i43 o5y o6$ => $m0n3y$
|
||||
[+] Monet => sM$ i1m so0 i43 o5y o6$ => $m0n3y$
|
||||
[+] Monet => ^$ l so0 i43 o5y o6$ => $m0n3y$
|
||||
[+] moneys => ^$ so0 se3 o6$ => $m0n3y$
|
||||
[*] Finished analysis in 0.00 seconds
|
||||
|
||||
It is possible to further expand generated words using `--maxworddist` and `--maxwords` flags. Similarly, you can produce more rules using `--maxrulelen` and `--maxrules` flags.
|
||||
|
||||
Disabling Advanced Engines
|
||||
------------------------------
|
||||
|
||||
`rulegen.py` includes a number of advanced engines to generate better quality words and rules. It is possible to disable them to observe the difference (or if they are causing issues) using `--simplewords` and `--simplerules` flags. Let's observe how both source words and rules change with these flags on:
|
||||
|
||||
$ python rulegen.py -q --hashcat --verbose --password \$m0n3y\$ --simplewords --simplerules
|
||||
[*] Using Enchant 'aspell' module. For best results please install
|
||||
'aspell' module language dictionaries.
|
||||
[*] Analyzing password: $m0n3y$
|
||||
[-] MN => {best distance exceeded: 7 (4)} => $m0n3y$
|
||||
[+] many => i0$ o20 i43 i6$ => $m0n3y$
|
||||
[+] mingy => i0$ o20 o43 i6$ => $m0n3y$
|
||||
[+] money => i0$ o20 o43 i6$ => $m0n3y$
|
||||
[*] Finished analysis in 0.01 seconds
|
||||
|
||||
Notice the quality of generated words was reduced significantly with words like 'MN', 'many' and 'mingy' having little relationship to the actual source word 'money'. At the same time, generated rules were reduced to simple insertions, deletions and replacements.
|
||||
|
||||
Processing password lists
|
||||
-----------------------------
|
||||
|
||||
Now that you have mastered all of the different flags and switches, we can attempt to generate words and rules for a collection of passwords. Let's generate a text file `korelogic.txt` containing the following fairly complex test passwords:
|
||||
|
||||
&~defcon
|
||||
'#(4)\
|
||||
August19681
|
||||
'&a123456
|
||||
10-D'Ann
|
||||
~|Bailey
|
||||
Krist0f3r
|
||||
f@cebOOK
|
||||
Nuclear$(
|
||||
zxcvbn2010!
|
||||
13Hark's
|
||||
NjB3qqm
|
||||
Sydney93?
|
||||
antalya%]
|
||||
Annl05de
|
||||
;-Fluffy
|
||||
|
||||
Now let's observe `rulegen.py` analysis by simply specifying the password file as the first argument:
|
||||
|
||||
$ python rulegen.py korelogic.txt
|
||||
_
|
||||
RuleGen 0.0.1 | |
|
||||
_ __ __ _ ___| | _
|
||||
| '_ \ / _` |/ __| |/ /
|
||||
| |_) | (_| | (__| <
|
||||
| .__/ \__,_|\___|_|\_\
|
||||
| |
|
||||
|_| iphelix@thesprawl.org
|
||||
|
||||
|
||||
[*] Using Enchant 'aspell' module. For best results please install
|
||||
'aspell' module language dictionaries.
|
||||
[*] Saving rules to analysis.rule
|
||||
[*] Saving words to analysis.word
|
||||
[*] Press Ctrl-C to end execution and generate statistical analysis.
|
||||
[*] Analyzing passwords file: testpasswd/korelogic.txt:
|
||||
[!] '#(4)\ => {skipping alpha less than 25%} => '#(4)\
|
||||
[!] '&a123456 => {skipping alpha less than 25%} => '&a123456
|
||||
[*] Finished processing 16 passwords in 0.03 seconds at the rate of 533.33 p/sec
|
||||
[*] Analyzed 14 passwords (87.50%)
|
||||
[-] Skipped 0 all numeric passwords (0.00%)
|
||||
[-] Skipped 2 passwords with less than 25% alpha characters (14.29%)
|
||||
[-] Skipped 0 passwords with non ascii characters (0.00%)
|
||||
|
||||
[*] Top 10 word statistics
|
||||
[+] Anatolia - 1 (3.33%)
|
||||
[+] xxxvii - 1 (3.33%)
|
||||
[+] Nuclear - 1 (3.33%)
|
||||
[+] defcon - 1 (3.33%)
|
||||
[+] Sydney - 1 (3.33%)
|
||||
[+] Kristi - 1 (3.33%)
|
||||
[+] August - 1 (3.33%)
|
||||
[+] Annalist - 1 (3.33%)
|
||||
[+] xxxv - 1 (3.33%)
|
||||
[+] Facebook - 1 (3.33%)
|
||||
[*] Saving Top 100 words in analysis-top100.word
|
||||
|
||||
[*] Top 10 rule statistics
|
||||
[+] ^3 ^1 o4r - 2 (3.51%)
|
||||
[+] i61 i79 i86 i98 oA1 - 2 (3.51%)
|
||||
[+] se0 i6f i73 o8r - 1 (1.75%)
|
||||
[+] i3a i5y o6a i7% o8] - 1 (1.75%)
|
||||
[+] $1 $9 $6 $8 $1 - 1 (1.75%)
|
||||
[+] i50 o6f sn3 o8r - 1 (1.75%)
|
||||
[+] i61 i79 i86 sa8 $1 - 1 (1.75%)
|
||||
[+] i50 i6f i73 o8r - 1 (1.75%)
|
||||
[+] ^- ^; - 1 (1.75%)
|
||||
[+] i61 i79 sa6 $8 $1 - 1 (1.75%)
|
||||
[*] Saving Top 100 rules in analysis-top100.rule
|
||||
|
||||
[*] Top 10 password statistics
|
||||
[+] Annl05de - 1 (7.14%)
|
||||
[+] Krist0f3r - 1 (7.14%)
|
||||
[+] 10-D'Ann - 1 (7.14%)
|
||||
[+] f@cebOOK - 1 (7.14%)
|
||||
[+] Nuclear$( - 1 (7.14%)
|
||||
[+] 13Hark's - 1 (7.14%)
|
||||
[+] ;-Fluffy - 1 (7.14%)
|
||||
[+] &~defcon - 1 (7.14%)
|
||||
[+] Sydney93? - 1 (7.14%)
|
||||
[+] antalya%] - 1 (7.14%)
|
||||
[*] Saving Top 100 passwords in analysis-top100.password
|
||||
|
||||
Using all default settings we were able to produce several high quality rules. In addition to the normally generated unsorted and not uniqued 'analysis.rule' and 'analysis.word' files, processing multiple passwords produces Top 10 statistics for words, rules and passwords (displayed in the output) and Top 100 statistics saved in 'analysis-top100.rule', 'analysis-top100.word' and 'analysis-top100.password' files.
|
||||
|
||||
Notice that several passwords such as '#(4)\ and '&a123456 were skipped because they do not have sufficient characteristics to be processed. Other than alpha character count, the program will skip all numeric passwords and passwords containing non-ASCII characters. The latter is due to a bug in the Enchant engine which I hope to fix in the future thus allowing word processing of many languages.
|
||||
|
||||
Debugging rules
|
||||
--------------------
|
||||
|
||||
There may be situations where you run into issues generating rules for the Hashcat password cracker. `rulegen.py` includes the `--hashcat` flag to validate generated words and rules using hashcat itself running in --stdout mode. In order for this mode to work correctly, you must download the latest version of hashcat-cli and edit the `HASHCAT_PATH` variable in the source. For example, at the time of this writing I have placed the hashcat-0.42 folder in the PACK directory and defined `HASHCAT_PATH` as 'hashcat-0.42/'.
|
||||
|
||||
You can also observe the inner workings of the rule generation engine with the `--debug` flag. Don't worry about messages of certain rule failings, this is the result of the halting problem solver trying to find an optimal and valid solution.
|
||||
|
||||
Have fun generating rules!
|
||||
|
||||
|
||||
Masks Analysis
|
||||
==================
|
||||
|
||||
The following tools implement password analysis and mask generation for the Hashcat password cracker. For additional details see [Hashcat Mask Attack](http://hashcat.net/wiki/doku.php?id=mask_attack) Wiki page.
|
||||
|
||||
In all of the examples, a standard hashcat notation to represent different character sets is used:
|
||||
|
||||
?l - lowercase characters
|
||||
?u - uppercase characters
|
||||
?d - digits
|
||||
?s - special characters
|
||||
|
||||
StatsGen
|
||||
------------
|
||||
|
||||
Before we can begin using the toolkit we must establish a selection criteria for the sample input. Since we are looking to analyze the way people create their passwords, we must obtain as large of a list of leaked passwords as possible. One such excellent list is based on RockYou.com compromise. This list both provides large and diverse enough sample that it can be used as a good estimate for common passwords used by similar sites (e.g. social networking). The analysis obtained from this list may not work for organizations with specific password policies (e.g. 8 characters, minimum digit and special character requirements, etc.). As such, selecting sample input should be as close to your target as possible. In addition, try to avoid obtaining lists based on already cracked passwords as it will generate statistics skewed toward the type of passwords that could be cracked and not the overall sample.
|
||||
|
||||
In the example below, we will use rockyou.txt containing approximately 14 million passwords. Launch `statsgen.py` with the following command line:
|
||||
|
||||
$ python statsgen.py rockyou.txt
|
||||
|
||||
Below is the output from the above command:
|
||||
|
||||
[*] Analyzing dictionary: rockyou.txt
|
||||
[+] Analyzing 100% (14344391/14344391) passwords
|
||||
NOTE: Statistics below is relative to the number of analyzed passwords, not total number of passwords
|
||||
|
||||
[*] Line Count Statistics...
|
||||
[+] 8: 20% (2966004)
|
||||
[+] 7: 17% (2506264)
|
||||
[+] 9: 15% (2191000)
|
||||
[+] 10: 14% (2013690)
|
||||
[+] 6: 13% (1947858)
|
||||
[+] 11: 06% (865973)
|
||||
[+] 12: 03% (555333)
|
||||
[+] 13: 02% (364169)
|
||||
[+] 5: 01% (259174)
|
||||
[+] 14: 01% (248514)
|
||||
[+] 15: 01% (161181)
|
||||
|
||||
[*] Mask statistics...
|
||||
[+] stringdigit: 37% (5339715)
|
||||
[+] allstring: 28% (4115881)
|
||||
[+] alldigit: 16% (2346842)
|
||||
[+] othermask: 05% (731240)
|
||||
[+] digitstring: 04% (663975)
|
||||
[+] stringdigitstring: 03% (450753)
|
||||
[+] stringspecialstring: 01% (204494)
|
||||
[+] stringspecialdigit: 01% (167826)
|
||||
[+] stringspecial: 01% (147874)
|
||||
[+] digitstringdigit: 00% (130518)
|
||||
[+] specialstringspecial: 00% (25100)
|
||||
[+] specialstring: 00% (14410)
|
||||
[+] allspecial: 00% (5763)
|
||||
|
||||
[*] Charset statistics...
|
||||
[+] loweralphanum: 42% (6075055)
|
||||
[+] loweralpha: 25% (3726656)
|
||||
[+] numeric: 16% (2346842)
|
||||
[+] loweralphaspecialnum: 03% (472673)
|
||||
[+] upperalphanum: 02% (407436)
|
||||
[+] mixedalphanum: 02% (382246)
|
||||
[+] loweralphaspecial: 02% (381095)
|
||||
[+] upperalpha: 01% (229893)
|
||||
[+] mixedalpha: 01% (159332)
|
||||
[+] mixedalphaspecialnum: 00% (53240)
|
||||
[+] mixedalphaspecial: 00% (49633)
|
||||
[+] upperalphaspecialnum: 00% (27732)
|
||||
[+] upperalphaspecial: 00% (26795)
|
||||
[+] special: 00% (5763)
|
||||
|
||||
[*] Advanced Mask statistics...
|
||||
[+] ?l?l?l?l?l?l?l?l: 04% (688053)
|
||||
[+] ?l?l?l?l?l?l: 04% (601257)
|
||||
[+] ?l?l?l?l?l?l?l: 04% (585093)
|
||||
[+] ?l?l?l?l?l?l?l?l?l: 03% (516862)
|
||||
[+] ?d?d?d?d?d?d?d: 03% (487437)
|
||||
[+] ?d?d?d?d?d?d?d?d?d?d: 03% (478224)
|
||||
[+] ?d?d?d?d?d?d?d?d: 02% (428306)
|
||||
[+] ?l?l?l?l?l?l?d?d: 02% (420326)
|
||||
[+] ?l?l?l?l?l?l?l?l?l?l: 02% (416961)
|
||||
[+] ?d?d?d?d?d?d: 02% (390546)
|
||||
[+] ?d?d?d?d?d?d?d?d?d: 02% (307540)
|
||||
[+] ?l?l?l?l?l?d?d: 02% (292318)
|
||||
[+] ?l?l?l?l?l?l?l?d?d: 01% (273640)
|
||||
[+] ?l?l?l?l?l?l?l?l?l?l?l: 01% (267742)
|
||||
[+] ?l?l?l?l?d?d?d?d: 01% (235364)
|
||||
[+] ?l?l?l?l?d?d: 01% (215079)
|
||||
[+] ?l?l?l?l?l?l?l?l?d?d: 01% (213117)
|
||||
[+] ?l?l?l?l?l?l?d: 01% (193110)
|
||||
[+] ?l?l?l?l?l?l?l?d: 01% (189855)
|
||||
[+] ?l?l?l?l?l?l?l?l?l?l?l?l: 01% (189360)
|
||||
[+] ?l?l?l?d?d?d?d: 01% (178308)
|
||||
[+] ?l?l?l?l?l?d?d?d?d: 01% (173560)
|
||||
[+] ?l?l?l?l?l?l?d?d?d?d: 01% (160596)
|
||||
[+] ?l?l?l?l?l?l?l?l?d: 01% (160061)
|
||||
[+] ?l?l?l?l?l?d?d?d: 01% (152406)
|
||||
|
||||
|
||||
Here is what we can immediately learn from the above list:
|
||||
|
||||
* The majority of passwords are 6-10 characters
|
||||
* The majority of passwords follow masks of the form "string followed by digits", "all string", and "all digits".
|
||||
* The majority of passwords use lower alphanumeric and lower alpha character sets.
|
||||
|
||||
The last section, "Advanced Mask Statistics", contains the actual masks matching the most frequent passwords. Masks are generated by attempting to find the minimum matching set of regular expressions that would match that string.
|
||||
|
||||
Individual symbols can be interpreted as follows:
|
||||
|
||||
?l - a single lowercase character
|
||||
?u - a single uppercase character
|
||||
?d - a single digit
|
||||
?s - a single special character
|
||||
|
||||
For example, the very first mask, "?l?l?l?l?l?l?l?l", will match all of the lowercase alpha passwords. Given the sample size you will be able to crack approximately 4% of passwords. However, after generating the initial output, you may be interested in using filters to narrow down on password data.
|
||||
|
||||
Let's see how RockYou users tend to select their passwords using the "stringdigit" mask (a string followed by numbers):
|
||||
|
||||
$ python statsgen.py -m stringdigit rockyou.txt
|
||||
|
||||
[*] Analyzing dictionary: rockyou.txt
|
||||
[+] Analyzing 37% (5339715/14344391) passwords
|
||||
NOTE: Statistics below is relative to the number of analyzed passwords, not total number of passwords
|
||||
|
||||
[*] Line Count Statistics...
|
||||
[+] 8: 23% (1267292)
|
||||
[+] 7: 18% (981472)
|
||||
[+] 9: 17% (940000)
|
||||
[+] 10: 14% (750966)
|
||||
[+] 6: 11% (619001)
|
||||
[+] 11: 05% (294874)
|
||||
[+] 12: 03% (175879)
|
||||
[+] 13: 01% (103048)
|
||||
[+] 14: 01% (65959)
|
||||
|
||||
[*] Mask statistics...
|
||||
[+] stringdigit: 100% (5339715)
|
||||
|
||||
[*] Charset statistics...
|
||||
[+] loweralphanum: 88% (4720336)
|
||||
[+] upperalphanum: 06% (325943)
|
||||
[+] mixedalphanum: 05% (293436)
|
||||
|
||||
[*] Advanced Mask statistics...
|
||||
[+] ?l?l?l?l?l?l?d?d: 07% (420326)
|
||||
[+] ?l?l?l?l?l?d?d: 05% (292318)
|
||||
[+] ?l?l?l?l?l?l?l?d?d: 05% (273640)
|
||||
[+] ?l?l?l?l?d?d?d?d: 04% (235364)
|
||||
[+] ?l?l?l?l?d?d: 04% (215079)
|
||||
[+] ?l?l?l?l?l?l?l?l?d?d: 03% (213117)
|
||||
[+] ?l?l?l?l?l?l?d: 03% (193110)
|
||||
[+] ?l?l?l?l?l?l?l?d: 03% (189855)
|
||||
[+] ?l?l?l?d?d?d?d: 03% (178308)
|
||||
[+] ?l?l?l?l?l?d?d?d?d: 03% (173560)
|
||||
[+] ?l?l?l?l?l?l?d?d?d?d: 03% (160596)
|
||||
[+] ?l?l?l?l?l?l?l?l?d: 02% (160061)
|
||||
[+] ?l?l?l?l?l?d?d?d: 02% (152406)
|
||||
[+] ?l?l?l?l?l?l?d?d?d: 02% (132220)
|
||||
[+] ?l?l?l?l?l?l?l?l?l?d: 02% (129833)
|
||||
[+] ?l?l?l?l?l?d: 02% (114739)
|
||||
[+] ?l?l?l?l?d?d?d: 02% (111221)
|
||||
[+] ?l?l?d?d?d?d: 01% (98305)
|
||||
[+] ?l?l?l?d?d?d: 01% (98189)
|
||||
[+] ?l?l?l?l?l?l?l?d?d?d: 01% (87613)
|
||||
[+] ?l?l?l?l?l?l?l?l?l?d?d: 01% (82655)
|
||||
[+] ?l?l?l?l?l?l?l?d?d?d?d: 01% (70915)
|
||||
[+] ?l?d?d?d?d?d?d: 01% (54888)
|
||||
|
||||
|
||||
The very top of the output specifies what percentage of total passwords was analyzed. In this case, by cracking only passwords matching the "stringdigit" mask it is only possible to recover about 37% of the total set.
|
||||
|
||||
Next, it appears that only 11% of this password type use anything other than lowercase. So it would be smart to concentrate on only lowercase strings matching this mask. At last, in the "Advanced Mask Statistics" section we can see that the majority of "stringdigit" passwords consist of a string with two or four digits following it.
|
||||
|
||||
With the information gained from the above output, we can begin creating a mental image of target users' password generation patterns.
|
||||
|
||||
There are a few other filters available for password length, mask, and character sets:
|
||||
|
||||
Length: -l [integer]
|
||||
|
||||
**Mask:** -m [numeric, loweralpha, upperalpha, mixedalpha, loweralphanum, upperalphanum, mixedaphanum, special, loweralphaspecial, upperalphaspecial, mixedalphaspecial, loweraphaspecialnum, upperalphaspecialnum, mixedalphaspecialnum]
|
||||
|
||||
**Character sets:** -c [alldigit, allstring, stringdigit, digitstring, digitstringdigit, stringdigitstring, allspecial, stringspecial, specialstring, stringspecialstring, stringspecialdigit, specialstringspecial]
|
||||
|
||||
*DEVELOPERS: You can edit respective lists on the very top of the source files and add regular expressions for whatever mask or character set you can imagine.*
|
||||
|
||||
While the "Advanced Mask Section" only displays patterns matching greater than 1% of all passwords, you can obtain and save a full list of password masks matching a given dictionary by using the following command:
|
||||
|
||||
$ python statsgen.py -o rockyou.csv rockyou.txt
|
||||
|
||||
All of the password masks and their frequencies were saved into the specified file in CSV format. Naturally, you can provide filters to only generate masks file matching custom filters. The output file can be used as an input to MaskGen tool covered in the next section.
|
||||
|
||||
MaskGen
|
||||
-----------
|
||||
|
||||
While analyzing passwords using `DictGen` can be both revealing and exciting, it is simply not feasible for larger data sets. MaskGen will analyze the masks output file produced by DictGen and help you generate optimal password mask collection for input to the Hashcat password cracker.
|
||||
|
||||
Let's run MaskGen with only DictGen's output as an argument:
|
||||
|
||||
$ python maskgen.py rockyou.csv
|
||||
|
||||
[*] [0] [11/14344391] [0.00] [0d|0h|0m|0s] ?
|
||||
[*] [1] [49/14344391] [0.00] [0d|0h|0m|0s] ?s?u?l?d
|
||||
[*] [2] [340/14344391] [0.00] [0d|0h|0m|0s] ?s?u?l?d ?s?u?l?d
|
||||
[*] [3] [2479/14344391] [0.00] [0d|0h|0m|0s] ?s?u?l?d ?s?u?l?d ?s?u?l?d
|
||||
[*] [4] [18015/14344391] [0.00] [0d|0h|0m|0s] ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d
|
||||
[*] [5] [259174/14344391] [1.00] [0d|0h|0m|7s] ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d
|
||||
[*] [6] [1947858/14344391] [13.00] [0d|0h|12m|735s] ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d
|
||||
[*] [7] [2506264/14344391] [17.00] [0d|19h|1163m|69833s] ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d
|
||||
[*] [8] [2966004/14344391] [20.00] [76d|1842h|110570m|6634204s] ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d
|
||||
[*] [9] [2191000/14344391] [15.00] [7294d|175069h|10504156m|630249409s] ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d
|
||||
|
||||
...
|
||||
[*] Coverage is %100 (14344391/14344391)
|
||||
[*] Total time 1754409989919144353064355175042468812368733249495616893327070104
|
||||
8211232752070650397369740269713581215815201614225211442387866496572012147724920
|
||||
4649812938136306665865356654151858255534645195728557246448055491199506753532407
|
||||
0837796021192337530275757511267739149674126051965467434111830202528596251368154
|
||||
7242960405598417380173912831468583249522597950717975278703858956758951666222598
|
||||
6032208513767643382460723235228659294580495141287225869341138204996227078055906
|
||||
67374828225147228141265693827036d|421058397580594644735445242010192514968495979
|
||||
8789480543984968251570695860496956095368737664731259491795648387414050746173087
|
||||
9591772829154539809115955105152713599807685596996445981328314846974853739147533
|
||||
3178878816208477777001071045086161007266181802704257395921790252471712184186839
|
||||
2486068631003283571338310497343620171241739079552459979885423508172314066888926
|
||||
1496221483998934236647730043304234411790573576454878230699318833908934208641873
|
||||
1691990944987334176016995877403533475390376651848886h|2526350385483567868412671
|
||||
4520611550898109758792736883263909809509424175162981736572212425988387556950773
|
||||
8903244843044770385277550636974927238854695730630916281598846113581978675887969
|
||||
8890818491224348851999073272897250866662006426270516966043597090816225544375530
|
||||
7415148302731051210354916411786019701428029862984061721027450434477314759879312
|
||||
5410490338844013335568977328903993605419886380259825406470743441458729269384195
|
||||
91300345360525185123901519456699240050561019752644212008523422599110933198m|151
|
||||
5810231290140721047602871236693053886585527564212995834588570565450509778904194
|
||||
3327455593032534170464334194690582686223116653038218495634331281743837854976895
|
||||
|
||||
|
||||
Ignore the crazy long last line for a minute and let's take a look at line with prefix of [5]. Here is how it can be interpreted:
|
||||
|
||||
[*] [5] [259174/14344391] [1.00] [0d|0h|0m|7s] ?s?u?l?d ?s?u?l?d ...
|
||||
\ \ \ \ \
|
||||
\ \ \ \ \ matching mask
|
||||
\ \ \ \
|
||||
\ \ \ \ time to crack
|
||||
\ \ \
|
||||
\ \ \ percent coverage from sample
|
||||
\ \
|
||||
\ \ total number of matching passwords
|
||||
\
|
||||
\ password length
|
||||
|
||||
NOTE: day, hour, minute, and seconds parameters are independent of each other. [0d|0h|1m|60s] means the total runtime is 60 seconds and not 1 minute 60 seconds. You will find it useful when doing calculations and converting back and forth.
|
||||
|
||||
The information contained in the above file will present you with an ordered list of masks together with how long it will take to crack all passwords matching this mask (default speed is 1,000,000,000 keys/sec), the percentage coverage of the total sample and total count of matching passwords.
|
||||
|
||||
In the above example "?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d ?s?u?l?d" mask shows that every single character in every position has the mask of "?s?u?l?d" or every single character. This line is suggesting that in order to crack every single password of length 5, you must attempt to crack entire character set for each position (or complete bruteforce) and it will take you about 7 seconds to do that.
|
||||
|
||||
NOTE: There is a bit of black magic going on in the background to generate masks for a specific password length. As you may have observed passwords become more complex by adding extra characters (exponential growth) as opposed to just increasing the character set in any given slot. As such, I have chosen to generate masks based on the length of passwords that they match. Combined masks are generated by looking at all masks of a given length and combining them together. For example masks ?l?l?l and ?l?l?d matching three character passwords will be combined to "?l ?l ?l?d" to match all passwords represented by both masks. This combined mask is less effective than taking each component mask separately; however, I will show you how to extract these components shortly.
|
||||
|
||||
The last (and really long) line specifies the total number of days/hours/minutes/seconds to crack every single password using every single mask in the database. The time value is such a huge number, because we are virtually performing a bruteforcing attack on all password lengths. What we are going to try to do is to optimize masks to crack the maximum number of password in minimum time.
|
||||
|
||||
You should almost never run MaskGen with no parameters (except to remind yourself why straight bruteforcing is bad). Let's use some of the data gained from StagsGen to generate a set of masks that will give us 50% of passwords within some reasonable time.
|
||||
|
||||
We have already collected statistical data about how many times each of the masks occurs, so let's leave out all of the infrequently occurring masks:
|
||||
|
||||
$ python maskgen.py --occurrence=10000 rockyou.csv
|
||||
|
||||
[*] [5] [220730/14344391] [1.00] [0d|0h|0m|0s] ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d
|
||||
[*] [6] [1741132/14344391] [12.00] [0d|0h|1m|87s] ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?s?u?l?d
|
||||
[*] [7] [2228900/14344391] [15.00] [0d|1h|89m|5396s] ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?s?u?l?d
|
||||
[*] [8] [2591942/14344391] [18.00] [5d|142h|8543m|512622s] ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?s?u?l?d ?u?l?d ?s?u?l?d
|
||||
[*] [9] [1857159/14344391] [12.00] [563d|13527h|811651m|48699101s] ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?s?u?l?d ?u?l?d ?s?u?l?d ?u?l?d ?s?u?l?d
|
||||
[*] [10] [1623494/14344391] [11.00] [14884d|357228h|21433720m|1286023221s] ?u?d?l ?u?d?l ?u?d?l ?u?d?l ?u?d?l ?u?d?l ?u?d?l ?u?d?l ?u?d?l ?s?u?d?l
|
||||
[*] [11] [634442/14344391] [4.00] [602275d|14454600h|867276011m|52036560683s] ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d
|
||||
[*] [12] [362705/14344391] [2.00] [54842d|1316217h|78973022m|4738381338s] ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d
|
||||
[*] [13] [205833/14344391] [1.00] [1974325d|47383813h|2843028802m|170581728179s] ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d
|
||||
[*] [14] [133214/14344391] [0.00] [71075720d|1705817281h|102349036907m|6140942214464s] ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d
|
||||
[*] [15] [55398/14344391] [0.00] [19412723d|465905372h|27954322371m|1677259342285s] ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l
|
||||
[*] [16] [33484/14344391] [0.00] [504730820d|12113539694h|726812381657m|43608742899428s] ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l
|
||||
[*] [17] [13147/14344391] [0.00] [13123001335d|314952032051h|18897121923085m|1133827315385150s] ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l ?l
|
||||
[*] Coverage is %81 (11701580/14344391)
|
||||
[*] Total time 13720867497d|329300819931h|19758049195865m|1185482951751954s
|
||||
|
||||
Using above masks it is possible to achieve significantly better cracking times while still preserving more than 80% total password coverage. For example, for passwords greater than 15 characters cracking character set can be reduced to only include lowercase alpha characters.
|
||||
|
||||
Let's take the above output to a much more reasonable time to satisfy our goal of cracking passwords in about a day with %50 coverage. For that, we will increase the frequency count as well as add maximum mask runtime parameter of one day or 8640 seconds:
|
||||
|
||||
$ python maskgen.py --occurrence=100000 --maxtime=8640 rockyou.csv
|
||||
|
||||
[*] [5] [125816/14344391] [0.00] [0d|0h|0m|0s] ?l ?l ?l ?l ?l
|
||||
[*] [6] [1321621/14344391] [9.00] [0d|0h|0m|2s] ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d
|
||||
[*] [7] [1847487/14344391] [12.00] [0d|0h|1m|78s] ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d
|
||||
[*] [8] [2114310/14344391] [14.00] [0d|0h|47m|2821s] ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d
|
||||
[*] [9] [1563883/14344391] [10.00] [1d|28h|1692m|101559s] ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d
|
||||
[*] [10] [638820/14344391] [4.00] [0d|6h|362m|21767s] ?d?l ?d?l ?d?l ?d?l ?d?l ?d?l ?d ?d ?d ?d
|
||||
[*] [11] [107864/14344391] [0.00] [0d|0h|1m|100s] ?d ?d ?d ?d ?d ?d ?d ?d ?d ?d ?d
|
||||
[*] Coverage is %53 (7719801/14344391)
|
||||
[*] Total time 1d|35h|2105m|126327s
|
||||
|
||||
We have almost reached the time requirement, but we can fine tune it by adding maximum password complexity. Password complexity is determined based on the number of all possible passwords matching the mask. For example, mask "?l?d ?l?d" can have up to (26+10)^2 or 1296 passwords. In our example, we are going to relax the occurrence flag, but include maximum password complexity of 2821109907456 which corresponds to an eight character loweralphanumeric password (26+10)^8. We are also going to include the --showmasks flag to see the exact component masks, their respective counts and relative percentages.
|
||||
|
||||
$ maskgen.py --occurrence=50000 --maxtime=8640 --complexity=2821109907456 --showmasks rockyou.csv
|
||||
|
||||
[*] [5] [125816/14344391] [0.00] [0d|0h|0m|0s] ?l ?l ?l ?l ?l
|
||||
[5] [125816/125816] [100.00] [0.00] [0d|0h|0m|0s] ?l?l?l?l?l
|
||||
[*] [6] [1569957/14344391] [10.00] [0d|0h|0m|56s] ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d ?u?l?d
|
||||
[6] [601257/1569957] [38.00] [4.00] [0d|0h|0m|0s] ?l?l?l?l?l?l
|
||||
[6] [390546/1569957] [24.00] [2.00] [0d|0h|0m|0s] ?d?d?d?d?d?d
|
||||
[6] [215079/1569957] [13.00] [1.00] [0d|0h|0m|0s] ?l?l?l?l?d?d
|
||||
[6] [114739/1569957] [7.00] [0.00] [0d|0h|0m|0s] ?l?l?l?l?l?d
|
||||
[6] [98305/1569957] [6.00] [0.00] [0d|0h|0m|0s] ?l?l?d?d?d?d
|
||||
[6] [98189/1569957] [6.00] [0.00] [0d|0h|0m|0s] ?l?l?l?d?d?d
|
||||
[6] [51842/1569957] [3.00] [0.00] [0d|0h|0m|0s] ?u?u?u?u?u?u
|
||||
[*] [7] [1902375/14344391] [13.00] [0d|0h|1m|78s] ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d
|
||||
[7] [585093/1902375] [30.00] [4.00] [0d|0h|0m|8s] ?l?l?l?l?l?l?l
|
||||
[7] [487437/1902375] [25.00] [3.00] [0d|0h|0m|0s] ?d?d?d?d?d?d?d
|
||||
[7] [292318/1902375] [15.00] [2.00] [0d|0h|0m|1s] ?l?l?l?l?l?d?d
|
||||
[7] [193110/1902375] [10.00] [1.00] [0d|0h|0m|3s] ?l?l?l?l?l?l?d
|
||||
[7] [178308/1902375] [9.00] [1.00] [0d|0h|0m|0s] ?l?l?l?d?d?d?d
|
||||
[7] [111221/1902375] [5.00] [0.00] [0d|0h|0m|0s] ?l?l?l?l?d?d?d
|
||||
[7] [54888/1902375] [2.00] [0.00] [0d|0h|0m|0s] ?l?d?d?d?d?d?d
|
||||
[*] [8] [2114310/14344391] [14.00] [0d|0h|47m|2821s] ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d ?l?d
|
||||
[8] [688053/2114310] [32.00] [4.00] [0d|0h|3m|208s] ?l?l?l?l?l?l?l?l
|
||||
[8] [428306/2114310] [20.00] [2.00] [0d|0h|0m|0s] ?d?d?d?d?d?d?d?d
|
||||
[8] [420326/2114310] [19.00] [2.00] [0d|0h|0m|30s] ?l?l?l?l?l?l?d?d
|
||||
[8] [235364/2114310] [11.00] [1.00] [0d|0h|0m|4s] ?l?l?l?l?d?d?d?d
|
||||
[8] [189855/2114310] [8.00] [1.00] [0d|0h|1m|80s] ?l?l?l?l?l?l?l?d
|
||||
[8] [152406/2114310] [7.00] [1.00] [0d|0h|0m|11s] ?l?l?l?l?l?d?d?d
|
||||
[*] [9] [1047021/14344391] [7.00] [0d|7h|470m|28211s] ?d?l ?d?l ?d?l ?d?l ?d?l ?d?l ?d?l ?d?l ?d
|
||||
[9] [307540/1047021] [29.00] [2.00] [0d|0h|0m|1s] ?d?d?d?d?d?d?d?d?d
|
||||
[9] [273640/1047021] [26.00] [1.00] [0d|0h|13m|803s] ?l?l?l?l?l?l?l?d?d
|
||||
[9] [173560/1047021] [16.00] [1.00] [0d|0h|1m|118s] ?l?l?l?l?l?d?d?d?d
|
||||
[9] [160061/1047021] [15.00] [1.00] [0d|0h|34m|2088s] ?l?l?l?l?l?l?l?l?d
|
||||
[9] [132220/1047021] [12.00] [0.00] [0d|0h|5m|308s] ?l?l?l?l?l?l?d?d?d
|
||||
[*] [10] [478224/14344391] [3.00] [0d|0h|0m|10s] ?d ?d ?d ?d ?d ?d ?d ?d ?d ?d
|
||||
[10] [478224/478224] [100.00] [3.00] [0d|0h|0m|10s] ?d?d?d?d?d?d?d?d?d?d
|
||||
[*] [11] [107864/14344391] [0.00] [0d|0h|1m|100s] ?d ?d ?d ?d ?d ?d ?d ?d ?d ?d ?d
|
||||
[11] [107864/107864] [100.00] [0.00] [0d|0h|1m|100s] ?d?d?d?d?d?d?d?d?d?d?d
|
||||
[*] Coverage is %51 (7345567/14344391)
|
||||
[*] Total time 0d|8h|521m|31276s
|
||||
|
||||
Aha! By only losing a few cracked passwords, we have significantly reduced the cracking time. There is a wealth of information that you can analyze, but with enough practice you should be able to achieve that perfect mask combination representative of your target.
|
||||
|
||||
There are a few additional useful parameters which I did not yet cover:
|
||||
|
||||
--pps - Exact passwords per second speed of a sample setup (used for statistical calculations)
|
||||
--minlength and --maxlength - Define minimum and maximum password lengths
|
||||
|
||||
--checkmask - Checks how many times a particular mask appears in the sample
|
||||
|
||||
For example, let's find out how well "?l ?l ?l ?l ?l ?l ?l?d ?l?d" mask will perform in the sample:
|
||||
|
||||
$ python maskgen.py --checkmask="?l ?l ?l ?l ?l ?l ?l?d ?l?d" --showmasks rockyou.csv
|
||||
|
||||
[*] [8] [1305708/14344391] [9.00] [0d|0h|6m|400s] ?l ?l ?l ?l ?l ?l ?l?d ?l?d
|
||||
[8] [688053/1305708] [52.00] [4.00] [0d|0h|3m|208s] ?l?l?l?l?l?l?l?l
|
||||
[8] [420326/1305708] [32.00] [2.00] [0d|0h|0m|30s] ?l?l?l?l?l?l?d?d
|
||||
[8] [189855/1305708] [14.00] [1.00] [0d|0h|1m|80s] ?l?l?l?l?l?l?l?d
|
||||
[8] [7474/1305708] [0.00] [0.00] [0d|0h|1m|80s] ?l?l?l?l?l?l?d?l
|
||||
[*] Coverage is %9 (1305708/14344391)
|
||||
[*] Total time 0d|0h|6m|400s
|
||||
|
||||
The above output, will tell you that this mask matches only 9 percent of passwords and will take only 6 minutes of cracking time.
|
||||
|
||||
PolicyGen
|
||||
--------------
|
||||
|
||||
A lot of the dictionary attacks will fail in the corporate environment with minimum password complexity rules. Instead of performing a pure bruteforcing attack, we can leverage known password complexity rules to avoid trying password candidates that are not compliant with the policy (e.g. ?l?l?l?l?l?l?l?l when at least one digit is required). Using PolicyGen, you will be able to generate a list of valid policy compliant (or intentionally non-compliant) rules that can be used to significantly decrease the cracking time. Below is a sample session where we generate all valid password masks for the environment requiring at least one digit, one upper, and one special characters.
|
||||
|
||||
$ python policygen.py --output=masks.txt --mindigit=1 --minupper=1 --minspecial=1 --length 8 --pps=40000000000
|
||||
[*] Password policy:
|
||||
[+] Password length: 8
|
||||
[+] Minimum strength: lower: 0, upper: 1, digits: 1, special: 1
|
||||
[+] Maximum strength: lower: 8, upper: 8, digits: 8, special: 8
|
||||
[*] Total Masks: 65536 Runtime: [1d|38h|2324m|139463s]
|
||||
[*] Policy Masks: 46620 Runtime: [0d|18h|1097m|65828s]
|
||||
|
||||
From the output above, the total bruteforce runtime for an eight character password is 38 hours. However, when cracking passwords only matching a specific password policy, we can reduce this time to only 18 hours!
|
||||
|
||||
Here is a snippet of the 'masks.txt' generated by the above command:
|
||||
|
||||
?l?l?l?l?l?u?d?s
|
||||
?l?l?l?l?l?u?s?d
|
||||
?l?l?l?l?l?d?u?s
|
||||
?l?l?l?l?l?d?s?u
|
||||
?l?l?l?l?l?s?u?d
|
||||
?l?l?l?l?l?s?d?u
|
||||
?l?l?l?l?u?l?d?s
|
||||
?l?l?l?l?u?l?s?d
|
||||
?l?l?l?l?u?u?d?s
|
||||
?l?l?l?l?u?u?s?d
|
||||
...
|
||||
|
||||
All of the above masks, will contain at least one digit, one upper and one special characters.
|
||||
|
||||
Running PolicyGen in verbose mode to see the exact character and complexity statistics for each mask:
|
||||
|
||||
$ python policygen.py --output=masks.txt --mindigit=1 --minupper=1 --minspecial=1 --length 8 --pps=40000000000 --verbose | head
|
||||
[*] Password policy:
|
||||
[+] Password length: 8
|
||||
[+] Minimum strength: lower: 0, upper: 1, digits: 1, special: 1
|
||||
[+] Maximum strength: lower: 8, upper: 8, digits: 8, special: 8
|
||||
[*] [0d|0h|0m|2s] ?l?l?l?l?l?u?d?s [l:5 u:1 d:1 s:1]
|
||||
[*] [0d|0h|0m|2s] ?l?l?l?l?l?u?s?d [l:5 u:1 d:1 s:1]
|
||||
[*] [0d|0h|0m|2s] ?l?l?l?l?l?d?u?s [l:5 u:1 d:1 s:1]
|
||||
[*] [0d|0h|0m|2s] ?l?l?l?l?l?d?s?u [l:5 u:1 d:1 s:1]
|
||||
[*] [0d|0h|0m|2s] ?l?l?l?l?l?s?u?d [l:5 u:1 d:1 s:1]
|
||||
[*] [0d|0h|0m|2s] ?l?l?l?l?l?s?d?u [l:5 u:1 d:1 s:1]
|
||||
...
|
||||
|
||||
NOTE: You can also use this program to test for compliance of existing passwords to the defined minimum password complexity policy. Simply reverse --mindigit to --maxdigit parameters in order to generate masks matching non-compliant passwords.
|
||||
|
||||
Conclusion
|
||||
==============
|
||||
|
||||
While this guide introduces a number of methods to analyze passwords, reverse rules and generate masks, there are a number of other tricks that are waiting for you to discover. I would be excited if you told me about some unusual use or suggestions for any of the covered tools.
|
||||
|
||||
Happy Cracking!
|
||||
-Peter
|
238
maskgen.py
Executable file
238
maskgen.py
Executable file
@ -0,0 +1,238 @@
|
||||
#!/usr/bin/python
|
||||
# MaskGen - Generate Password Masks
|
||||
#
|
||||
# This tool is part of PACK (Password Analysis and Cracking Kit)
|
||||
#
|
||||
# VERSION 0.0.2
|
||||
#
|
||||
# Copyright (C) 2013 Peter Kacherginsky
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
import csv, string
|
||||
from operator import itemgetter
|
||||
from optparse import OptionParser
|
||||
|
||||
VERSION = "0.0.2"
|
||||
|
||||
# PPS (Passwords per Second) Cracking Speed
|
||||
pps = 1000000000
|
||||
|
||||
# Global Variables
|
||||
mastermasks = dict()
|
||||
allmasks = dict()
|
||||
|
||||
##################################################################
|
||||
## Calculate complexity of a single mask
|
||||
##################################################################
|
||||
def complexity(mask):
|
||||
count = 1
|
||||
for char in mask[1:].split("?"):
|
||||
if char == "l": count *= 26
|
||||
elif char == "u": count *= 26
|
||||
elif char == "d": count *= 10
|
||||
elif char == "s": count *= 33
|
||||
else: "[!] Error, unknown mask ?%s" % char
|
||||
|
||||
return count
|
||||
|
||||
###################################################################
|
||||
## Calculate complexity of a complex mask
|
||||
###################################################################
|
||||
def maskcomplexity(mask):
|
||||
complexity = 1
|
||||
for submask in mask.split(" "):
|
||||
permutations = 0
|
||||
for char in submask[1:].split("?"):
|
||||
if char == "l": permutations += 26
|
||||
elif char == "u": permutations += 26
|
||||
elif char == "d": permutations += 10
|
||||
elif char == "s": permutations += 33
|
||||
else: "[!] Error, unknown mask ?%s" % char
|
||||
if permutations: complexity *= permutations
|
||||
|
||||
return complexity
|
||||
|
||||
###################################################################
|
||||
## Check if complex mask matches a sample mask
|
||||
###################################################################
|
||||
def matchmask(checkmask,mask):
|
||||
length = len(mask)/2
|
||||
checklength = len(checkmask.split(" "))
|
||||
|
||||
if length == checklength:
|
||||
masklist = mask[1:].split("?")
|
||||
for i, submask in enumerate(checkmask.split(" ")):
|
||||
for char in submask[1:].split("?"):
|
||||
if char == masklist[i]:
|
||||
break
|
||||
else:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
###################################################################
|
||||
## Combine masks
|
||||
###################################################################
|
||||
def genmask(mask):
|
||||
global mastermasks
|
||||
length = len(mask)/2
|
||||
|
||||
try:
|
||||
lengthmask = mastermasks[length]
|
||||
except:
|
||||
mastermasks[length] = dict()
|
||||
lengthmask = mastermasks[length]
|
||||
|
||||
for i,v in enumerate(mask[1:].split("?")):
|
||||
try:
|
||||
positionmask = lengthmask[i]
|
||||
except:
|
||||
lengthmask[i] = set()
|
||||
positionmask = lengthmask[i]
|
||||
|
||||
positionmask.add("?%s" % v)
|
||||
|
||||
###################################################################
|
||||
## Store all masks in based on length and count
|
||||
###################################################################
|
||||
def storemask(mask,occurrence):
|
||||
global allmasks
|
||||
length = len(mask)/2
|
||||
|
||||
#print "Storing mask %s" % mask
|
||||
try:
|
||||
lengthmask = allmasks[length]
|
||||
except:
|
||||
allmasks[length] = dict()
|
||||
lengthmask = allmasks[length]
|
||||
|
||||
lengthmask[mask] = int(occurrence)
|
||||
|
||||
def main():
|
||||
# Constants
|
||||
total_occurrence = 0
|
||||
sample_occurrence = 0
|
||||
sample_time = 0
|
||||
|
||||
# TODO: I want to actually see statistical analysis of masks not just based on size but also frequency and time
|
||||
# per length and per count
|
||||
|
||||
header = " _ \n"
|
||||
header += " MaskGen 0.0.2 | |\n"
|
||||
header += " _ __ __ _ ___| | _\n"
|
||||
header += " | '_ \ / _` |/ __| |/ /\n"
|
||||
header += " | |_) | (_| | (__| < \n"
|
||||
header += " | .__/ \__,_|\___|_|\_\\\n"
|
||||
header += " | | \n"
|
||||
header += " |_| iphelix@thesprawl.org\n"
|
||||
header += "\n"
|
||||
|
||||
parser = OptionParser("%prog [options] masksfile.csv", version="%prog "+VERSION)
|
||||
parser.add_option("--minlength", dest="minlength",help="Minimum password length", type="int", metavar="8")
|
||||
parser.add_option("--maxlength", dest="maxlength",help="Maximum password length", type="int", metavar="8")
|
||||
parser.add_option("--mintime", dest="mintime",help="Minimum time to crack", type="int", metavar="")
|
||||
parser.add_option("--maxtime", dest="maxtime",help="Maximum time to crack", type="int", metavar="")
|
||||
parser.add_option("--complexity", dest="complexity",help="maximum password complexity", type="int", metavar="")
|
||||
parser.add_option("--occurrence", dest="occurrence",help="minimum times mask was used", type="int", metavar="")
|
||||
parser.add_option("--checkmask", dest="checkmask",help="check mask coverage", metavar="?u?l ?l ?l ?l ?l ?d")
|
||||
parser.add_option("--showmasks", dest="showmasks",help="Show matching masks", action="store_true", default=False)
|
||||
parser.add_option("--pps", dest="pps",help="Passwords per Second", type="int", default=pps, metavar="1000000000")
|
||||
parser.add_option("-q", "--quiet", action="store_true", dest="quiet", default=False, help="Don't show headers.")
|
||||
(options, args) = parser.parse_args()
|
||||
|
||||
# Print program header
|
||||
if not options.quiet:
|
||||
print header
|
||||
|
||||
if len(args) != 1:
|
||||
parser.error("no masks file specified")
|
||||
exit(1)
|
||||
|
||||
print "[*] Analysing masks: %s" % args[0]
|
||||
maskReader = csv.reader(open(args[0],'r'), delimiter=',', quotechar='"')
|
||||
#headerline = maskReader.next()
|
||||
|
||||
# Check the coverage of a particular mask for a given set
|
||||
if options.checkmask:
|
||||
length = len(options.checkmask.split(" "))
|
||||
|
||||
# Prepare master mask list for analysis
|
||||
mastermasks[length] = dict()
|
||||
lengthmask = mastermasks[length]
|
||||
for i, submask in enumerate(options.checkmask.split(" ")):
|
||||
lengthmask[i] = set()
|
||||
positionmask = lengthmask[i]
|
||||
for char in submask[1:].split("?"):
|
||||
positionmask.add("?%s" % char)
|
||||
|
||||
for (mask,occurrence) in maskReader:
|
||||
total_occurrence += int(occurrence)
|
||||
if matchmask(options.checkmask,mask):
|
||||
sample_occurrence += int(occurrence)
|
||||
storemask(mask,occurrence)
|
||||
|
||||
# Generate masks from a given set
|
||||
else:
|
||||
for (mask,occurrence) in maskReader:
|
||||
total_occurrence += int(occurrence)
|
||||
|
||||
if (not options.occurrence or int(occurrence) >= options.occurrence) and \
|
||||
(not options.maxlength or len(mask)/2 <= options.maxlength) and \
|
||||
(not options.minlength or len(mask)/2 >= options.minlength) and \
|
||||
(not options.complexity or complexity(mask) <= options.complexity) and \
|
||||
(not options.maxtime or complexity(mask)/options.pps <= options.maxtime) and \
|
||||
(not options.mintime or complexity(mask)/options.pps >= options.mintime):
|
||||
|
||||
genmask(mask)
|
||||
storemask(mask,occurrence)
|
||||
sample_occurrence += int(occurrence)
|
||||
|
||||
####################################################################################
|
||||
## Analysis
|
||||
####################################################################################
|
||||
for length,lengthmask in sorted(mastermasks.iteritems()):
|
||||
maskstring = ""
|
||||
for position,maskset in lengthmask.iteritems(): maskstring += "%s " % string.join(maskset,"")
|
||||
|
||||
mask_time = maskcomplexity(maskstring)/options.pps
|
||||
sample_time += mask_time
|
||||
|
||||
length_occurrence = 0
|
||||
|
||||
for mask, occurrence in allmasks[length].iteritems():
|
||||
length_occurrence += int(occurrence)
|
||||
print "[*] [%d] [%d/%d] [%.02f] [%dd|%dh|%dm|%ds] %s" % (length, length_occurrence, total_occurrence, length_occurrence*100/total_occurrence, mask_time/60/60/24, mask_time/60/60, mask_time/60, mask_time,maskstring)
|
||||
|
||||
if options.showmasks:
|
||||
for mask,mask_occurrence in sorted(allmasks[length].iteritems(),key=itemgetter(1),reverse=True):
|
||||
mask_time = complexity(mask)/options.pps
|
||||
print " [%d] [%d/%d] [%.02f] [%.02f] [%dd|%dh|%dm|%ds] %s" % (length, mask_occurrence, length_occurrence, mask_occurrence*100/length_occurrence, mask_occurrence*100/total_occurrence,mask_time/60/60/24, mask_time/60/60, mask_time/60, mask_time,mask)
|
||||
|
||||
print "[*] Coverage is %%%d (%d/%d)" % (sample_occurrence*100/total_occurrence,sample_occurrence,total_occurrence)
|
||||
print "[*] Total time [%dd|%dh|%dm|%ds]" % (sample_time/60/60/24,sample_time/60/60,sample_time/60,sample_time)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
158
policygen.py
Executable file
158
policygen.py
Executable file
@ -0,0 +1,158 @@
|
||||
#!/usr/bin/python
|
||||
# PolicyGen - Analyze and Generate password masks according to a password policy
|
||||
#
|
||||
# This tool is part of PACK (Password Analysis and Cracking Kit)
|
||||
#
|
||||
# VERSION 0.0.2
|
||||
#
|
||||
# Copyright (C) 2013 Peter Kacherginsky
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
import string, random
|
||||
from optparse import OptionParser, OptionGroup
|
||||
import itertools
|
||||
|
||||
VERSION = "0.0.1"
|
||||
|
||||
# PPS (Passwords per Second) Cracking Speed
|
||||
pps = 1000000000
|
||||
|
||||
# Global Variables
|
||||
sample_time = 0
|
||||
total_time = 0
|
||||
|
||||
##################################################################
|
||||
# Calculate complexity of a single mask
|
||||
##################################################################
|
||||
def complexity(mask):
|
||||
count = 1
|
||||
for char in mask[1:].split("?"):
|
||||
if char == "l": count *= 26
|
||||
elif char == "u": count *= 26
|
||||
elif char == "d": count *= 10
|
||||
elif char == "s": count *= 33
|
||||
else: "[!] Error, unknown mask ?%s" % char
|
||||
|
||||
return count
|
||||
|
||||
###################################################################
|
||||
# Check whether a sample password mask matches defined policy
|
||||
###################################################################
|
||||
def filtermask(maskstring,options):
|
||||
global total_time, sample_time
|
||||
|
||||
# define character counters
|
||||
lowercount = uppercount = digitcount = specialcount = 0
|
||||
|
||||
# calculate password complexity and cracking time
|
||||
mask_time = complexity(maskstring)/options.pps
|
||||
total_time += mask_time
|
||||
|
||||
for char in maskstring[1:].split("?"):
|
||||
if char == "l": lowercount += 1
|
||||
elif char == "u": uppercount += 1
|
||||
elif char == "d": digitcount += 1
|
||||
elif char == "s": specialcount += 1
|
||||
|
||||
# Filter according to password policy
|
||||
if lowercount >= options.minlower and lowercount <= options.maxlower and \
|
||||
uppercount >= options.minupper and uppercount <= options.maxupper and \
|
||||
digitcount >= options.mindigits and digitcount <= options.maxdigits and \
|
||||
specialcount >= options.minspecial and specialcount <= options.maxspecial:
|
||||
sample_time += mask_time
|
||||
if options.verbose:
|
||||
print "[*] [%dd|%dh|%dm|%ds] %s [l:%d u:%d d:%d s:%d]" % (mask_time/60/60/24, mask_time/60/60, mask_time/60, mask_time,maskstring,lowercount,uppercount,digitcount,specialcount)
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def main():
|
||||
# define mask counters
|
||||
total_count = sample_count = 0
|
||||
|
||||
header = " _ \n"
|
||||
header += " PolicyGen 0.0.1 | |\n"
|
||||
header += " _ __ __ _ ___| | _\n"
|
||||
header += " | '_ \ / _` |/ __| |/ /\n"
|
||||
header += " | |_) | (_| | (__| < \n"
|
||||
header += " | .__/ \__,_|\___|_|\_\\\n"
|
||||
header += " | | \n"
|
||||
header += " |_| iphelix@thesprawl.org\n"
|
||||
header += "\n"
|
||||
|
||||
# parse command line arguments
|
||||
parser = OptionParser("%prog [options]\n\nType --help for more options", version="%prog "+VERSION)
|
||||
parser.add_option("--length", dest="length", help="Password length", type="int", default=8, metavar="8")
|
||||
parser.add_option("-o", "--output", dest="output",help="Save masks to a file", metavar="masks.txt")
|
||||
parser.add_option("--pps", dest="pps", help="Passwords per Second", type="int", default=pps, metavar="1000000000")
|
||||
parser.add_option("-v", "--verbose", action="store_true", dest="verbose")
|
||||
|
||||
group = OptionGroup(parser, "Password Policy", "Define the minimum (or maximum) password strength policy that you would like to test")
|
||||
group.add_option("--mindigits", dest="mindigits", help="Minimum number of digits", default=0, type="int", metavar="1")
|
||||
group.add_option("--minlower", dest="minlower", help="Minimum number of lower-case characters", default=0, type="int", metavar="1")
|
||||
group.add_option("--minupper", dest="minupper", help="Minimum number of upper-case characters", default=0, type="int", metavar="1")
|
||||
group.add_option("--minspecial", dest="minspecial", help="Minimum number of special characters", default=0, type="int", metavar="1")
|
||||
group.add_option("--maxdigits", dest="maxdigits", help="Maximum number of digits", default=9999, type="int", metavar="3")
|
||||
group.add_option("--maxlower", dest="maxlower", help="Maximum number of lower-case characters", default=9999, type="int", metavar="3")
|
||||
group.add_option("--maxupper", dest="maxupper", help="Maximum number of upper-case characters", default=9999, type="int", metavar="3")
|
||||
group.add_option("--maxspecial", dest="maxspecial", help="Maximum number of special characters", default=9999, type="int", metavar="3")
|
||||
parser.add_option("-q", "--quiet", action="store_true", dest="quiet", default=False, help="Don't show headers.")
|
||||
parser.add_option_group(group)
|
||||
|
||||
(options, args) = parser.parse_args()
|
||||
|
||||
# cleanup maximum occurence options
|
||||
if options.maxlower > options.length: options.maxlower = options.length
|
||||
if options.maxdigits > options.length: options.maxdigits = options.length
|
||||
if options.mindigits > options.length: options.mindigits = options.length
|
||||
if options.maxupper > options.length: options.maxupper = options.length
|
||||
if options.maxspecial > options.length: options.maxspecial = options.length
|
||||
|
||||
# Print program header
|
||||
if not options.quiet:
|
||||
print header
|
||||
|
||||
# print current password policy
|
||||
print "[*] Password policy:"
|
||||
print "[+] Password length: %d" % options.length
|
||||
print "[+] Minimum strength: lower: %d, upper: %d, digits: %d, special: %d" % (options.minlower, options.minupper, options.mindigits, options.minspecial)
|
||||
print "[+] Maximum strength: lower: %d, upper: %d, digits: %d, special: %d" % (options.maxlower, options.maxupper, options.maxdigits, options.maxspecial)
|
||||
|
||||
if options.output: f = open(options.output, 'w')
|
||||
|
||||
# generate all possible password masks and compare them to policy
|
||||
# TODO: Randomize or even statistically arrange matching masks
|
||||
for password in itertools.product(['?l','?u','?d','?s'],repeat=options.length):
|
||||
if filtermask(''.join(password), options):
|
||||
if options.output: f.write("%s\n" % ''.join(password))
|
||||
sample_count +=1
|
||||
total_count += 1
|
||||
|
||||
if options.output: f.close()
|
||||
|
||||
print "[*] Total Masks: %d Runtime: [%dd|%dh|%dm|%ds]" % (total_count, total_time/60/60/24, total_time/60/60, total_time/60, total_time)
|
||||
print "[*] Policy Masks: %d Runtime: [%dd|%dh|%dm|%ds]" % (sample_count, sample_time/60/60/24, sample_time/60/60, sample_time/60, sample_time)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
925
rulegen.py
Executable file
925
rulegen.py
Executable file
@ -0,0 +1,925 @@
|
||||
#!/usr/bin/env python
|
||||
# Rulegen.py - Advanced automated password rule and wordlist generator for the
|
||||
# Hashcat password cracker using the Levenshtein Reverse Path
|
||||
# algorithm and Enchant spell checking library.
|
||||
#
|
||||
# This tool is part of PACK (Password Analysis and Cracking Kit)
|
||||
#
|
||||
# VERSION 0.0.1
|
||||
#
|
||||
# Copyright (C) 2013 Peter Kacherginsky
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#
|
||||
# CHANGELOG:
|
||||
# [*] Fixed greedy substitution issue (thanks smarteam)
|
||||
|
||||
import sys
|
||||
import re
|
||||
import time
|
||||
import operator
|
||||
import enchant
|
||||
|
||||
from optparse import OptionParser, OptionGroup
|
||||
|
||||
VERSION = "0.0.1"
|
||||
|
||||
# Testing rules with hashcat --stdout
|
||||
import subprocess
|
||||
HASHCAT_PATH = "hashcat-0.42/"
|
||||
|
||||
# Rule Generator class responsible for the complete cycle of rule generation
|
||||
class RuleGen:
|
||||
|
||||
# Initialize Rule Generator class
|
||||
def __init__(self,language="en",providers="aspell,myspell",basename='analysis'):
|
||||
|
||||
self.enchant_broker = enchant.Broker()
|
||||
self.enchant_broker.set_ordering("*",providers)
|
||||
|
||||
self.enchant = enchant.Dict(language, self.enchant_broker)
|
||||
|
||||
# Output options
|
||||
self.basename = basename
|
||||
self.output_rules_f = open("%s.rule" % basename, 'w')
|
||||
self.output_words_f = open("%s.word" % basename, 'w')
|
||||
|
||||
# Finetuning word generation
|
||||
self.max_word_dist = 10
|
||||
self.max_words = 10
|
||||
self.more_words = False
|
||||
self.simple_words = False
|
||||
|
||||
# Finetuning rule generation
|
||||
self.max_rule_len = 10
|
||||
self.max_rules = 10
|
||||
self.more_rules = False
|
||||
self.simple_rules = False
|
||||
|
||||
# Debugging options
|
||||
self.verbose = False
|
||||
self.debug = False
|
||||
self.word = None
|
||||
self.quiet = False
|
||||
|
||||
########################################################################
|
||||
# Word and Rule Statistics
|
||||
self.word_stats = dict()
|
||||
self.rule_stats = dict()
|
||||
self.password_stats = dict()
|
||||
|
||||
self.numeric_stats_total = 0
|
||||
self.special_stats_total = 0
|
||||
self.foreign_stats_total = 0
|
||||
|
||||
########################################################################
|
||||
# Preanalysis Password Patterns
|
||||
self.password_pattern = dict()
|
||||
self.password_pattern["insertion"] = re.compile('^[^a-z]*(?P<password>.+?)[^a-z]*$', re.IGNORECASE)
|
||||
self.password_pattern["email"] = re.compile('^(?P<password>.+?)@[A-Z0-9.-]+\.[A-Z]{2,4}', re.IGNORECASE)
|
||||
self.password_pattern["alldigits"] = re.compile('^(\d+)$', re.IGNORECASE)
|
||||
self.password_pattern["allspecial"]= re.compile('^([^a-z0-9]+)$', re.IGNORECASE)
|
||||
|
||||
########################################################################
|
||||
# Hashcat Rules Engine
|
||||
self.hashcat_rule = dict()
|
||||
|
||||
# Dummy rule
|
||||
self.hashcat_rule[':'] = lambda x: x # Do nothing
|
||||
|
||||
# Case rules
|
||||
self.hashcat_rule["l"] = lambda x: x.lower() # Lowercase all letters
|
||||
self.hashcat_rule["u"] = lambda x: x.upper() # Capitalize all letters
|
||||
self.hashcat_rule["c"] = lambda x: x.capitalize() # Capitalize the first letter
|
||||
self.hashcat_rule["C"] = lambda x: x[0].lower() + x[1:].upper() # Lowercase the first found character, uppercase the rest
|
||||
self.hashcat_rule["t"] = lambda x: x.swapcase() # Toggle the case of all characters in word
|
||||
self.hashcat_rule["T"] = lambda x,y: x[:y] + x[y].swapcase() + x[y+1:] # Toggle the case of characters at position N
|
||||
self.hashcat_rule["E"] = lambda x: " ".join([i[0].upper()+i[1:] for i in x.split(" ")]) # Upper case the first letter and every letter after a space
|
||||
|
||||
# Rotation rules
|
||||
self.hashcat_rule["r"] = lambda x: x[::-1] # Reverse the entire word
|
||||
self.hashcat_rule["{"] = lambda x: x[1:]+x[0] # Rotate the word left
|
||||
self.hashcat_rule["}"] = lambda x: x[-1]+x[:-1] # Rotate the word right
|
||||
|
||||
# Duplication rules
|
||||
self.hashcat_rule["d"] = lambda x: x+x # Duplicate entire word
|
||||
self.hashcat_rule["p"] = lambda x,y: x*y # Duplicate entire word N times
|
||||
self.hashcat_rule["f"] = lambda x: x+x[::-1] # Duplicate word reversed
|
||||
self.hashcat_rule["z"] = lambda x,y: x[0]*y+x # Duplicate first character N times
|
||||
self.hashcat_rule["Z"] = lambda x,y: x+x[-1]*y # Duplicate last character N times
|
||||
self.hashcat_rule["q"] = lambda x: "".join([i+i for i in x]) # Duplicate every character
|
||||
self.hashcat_rule["y"] = lambda x,y: x[:y]+x # Duplicate first N characters
|
||||
self.hashcat_rule["Y"] = lambda x,y: x+x[-y:] # Duplicate last N characters
|
||||
|
||||
# Cutting rules
|
||||
self.hashcat_rule["["] = lambda x: x[1:] # Delete first character
|
||||
self.hashcat_rule["]"] = lambda x: x[:-1] # Delete last character
|
||||
self.hashcat_rule["D"] = lambda x,y: x[:y]+x[y+1:] # Deletes character at position N
|
||||
self.hashcat_rule["'"] = lambda x,y: x[:y] # Truncate word at position N
|
||||
self.hashcat_rule["x"] = lambda x,y,z: x[:y]+x[y+z:] # Delete M characters, starting at position N
|
||||
self.hashcat_rule["@"] = lambda x,y: x.replace(y,'') # Purge all instances of X
|
||||
|
||||
# Insertion rules
|
||||
self.hashcat_rule["$"] = lambda x,y: x+y # Append character to end
|
||||
self.hashcat_rule["^"] = lambda x,y: y+x # Prepend character to front
|
||||
self.hashcat_rule["i"] = lambda x,y,z: x[:y]+z+x[y:] # Insert character X at position N
|
||||
|
||||
# Replacement rules
|
||||
self.hashcat_rule["o"] = lambda x,y,z: x[:y]+z+x[y+1:] # Overwrite character at position N with X
|
||||
self.hashcat_rule["s"] = lambda x,y,z: x.replace(y,z) # Replace all instances of X with Y
|
||||
self.hashcat_rule["L"] = lambda x,y: x[:y]+chr(ord(x[y])<<1)+x[y+1:] # Bitwise shift left character @ N
|
||||
self.hashcat_rule["R"] = lambda x,y: x[:y]+chr(ord(x[y])>>1)+x[y+1:] # Bitwise shift right character @ N
|
||||
self.hashcat_rule["+"] = lambda x,y: x[:y]+chr(ord(x[y])+1)+x[y+1:] # Increment character @ N by 1 ascii value
|
||||
self.hashcat_rule["-"] = lambda x,y: x[:y]+chr(ord(x[y])-1)+x[y+1:] # Decrement character @ N by 1 ascii value
|
||||
self.hashcat_rule["."] = lambda x,y: x[:y]+x[y+1]+x[y+1:] # Replace character @ N with value at @ N plus 1
|
||||
self.hashcat_rule[","] = lambda x,y: x[:y]+x[y-1]+x[y+1:] # Replace character @ N with value at @ N minus 1
|
||||
|
||||
# Swappping rules
|
||||
self.hashcat_rule["k"] = lambda x: x[1]+x[0]+x[2:] # Swap first two characters
|
||||
self.hashcat_rule["K"] = lambda x: x[:-2]+x[-1]+x[-2] # Swap last two characters
|
||||
self.hashcat_rule["*"] = lambda x,y,z: x[:y]+x[z]+x[y+1:z]+x[y]+x[z+1:] if z > y else x[:z]+x[y]+x[z+1:y]+x[z]+x[y+1:] # Swap character X with Y
|
||||
|
||||
########################################################################
|
||||
# Common numeric and special character substitutions (1337 5p34k)
|
||||
self.leet = dict()
|
||||
self.leet["1"] = "i"
|
||||
self.leet["2"] = "z"
|
||||
self.leet["3"] = "e"
|
||||
self.leet["4"] = "a"
|
||||
self.leet["5"] = "s"
|
||||
self.leet["6"] = "b"
|
||||
self.leet["7"] = "t"
|
||||
self.leet["8"] = "b"
|
||||
self.leet["9"] = "g"
|
||||
self.leet["0"] = "o"
|
||||
self.leet["!"] = "i"
|
||||
self.leet["|"] = "i"
|
||||
self.leet["@"] = "a"
|
||||
self.leet["$"] = "s"
|
||||
self.leet["+"] = "t"
|
||||
|
||||
############################################################################
|
||||
# Calculate Levenshtein edit path matrix
|
||||
def levenshtein(self,word,password):
|
||||
matrix = []
|
||||
|
||||
# Generate and populate the initial matrix
|
||||
for i in xrange(len(password) + 1):
|
||||
matrix.append([])
|
||||
for j in xrange(len(word) + 1):
|
||||
if i == 0:
|
||||
matrix[i].append(j)
|
||||
elif j == 0:
|
||||
matrix[i].append(i)
|
||||
else:
|
||||
matrix[i].append(0)
|
||||
|
||||
# Calculate edit distance for each substring
|
||||
for i in xrange(1,len(password) + 1):
|
||||
for j in xrange(1,len(word) + 1):
|
||||
if password[i-1] == word[j-1]:
|
||||
matrix[i][j] = matrix[i-1][j-1]
|
||||
else:
|
||||
insertion = matrix[i-1][j] + 1
|
||||
deletion = matrix[i][j-1] + 1
|
||||
substitution = matrix[i-1][j-1] + 1
|
||||
matrix[i][j] = min(insertion, deletion, substitution)
|
||||
|
||||
return matrix
|
||||
|
||||
############################################################################
|
||||
# Print word X password matrix
|
||||
def levenshtein_print(self,matrix,word,password):
|
||||
print " %s" % " ".join(list(word))
|
||||
for i,row in enumerate(matrix):
|
||||
if i == 0: print " ",
|
||||
else: print password[i-1],
|
||||
print " ".join("%2d" % col for col in row)
|
||||
|
||||
############################################################################
|
||||
# Reverse Levenshtein Path Algorithm by Peter Kacherginsky
|
||||
# Generates a list of edit operations necessary to transform a source word
|
||||
# into a password. Edit operations are recorded in the form:
|
||||
# (operation, password_offset, word_offset)
|
||||
# Where an operation can be either insertion, deletion or replacement.
|
||||
def levenshtein_reverse_path(self,matrix,word,password):
|
||||
paths = self.levenshtein_reverse_recursive(matrix,len(matrix)-1,len(matrix[0])-1,0)
|
||||
return [path for path in paths if len(path) <= matrix[-1][-1]]
|
||||
|
||||
# Calculate reverse Levenshtein paths (recursive, depth first, short-circuited)
|
||||
def levenshtein_reverse_recursive(self,matrix,i,j,path_len):
|
||||
|
||||
if i == 0 and j == 0 or path_len > matrix[-1][-1]:
|
||||
return [[]]
|
||||
else:
|
||||
paths = list()
|
||||
|
||||
cost = matrix[i][j]
|
||||
|
||||
# Calculate minimum cost of each operation
|
||||
cost_delete = cost_insert = cost_equal_or_replace = sys.maxint
|
||||
if i > 0: cost_insert = matrix[i-1][j]
|
||||
if j > 0: cost_delete = matrix[i][j-1]
|
||||
if i > 0 and j > 0: cost_equal_or_replace = matrix[i-1][j-1]
|
||||
cost_min = min(cost_delete, cost_insert, cost_equal_or_replace)
|
||||
|
||||
# Recurse through reverse path for each operation
|
||||
if cost_insert == cost_min:
|
||||
insert_paths = self.levenshtein_reverse_recursive(matrix,i-1,j,path_len+1)
|
||||
for insert_path in insert_paths: paths.append(insert_path + [('insert',i-1,j)])
|
||||
|
||||
if cost_delete == cost_min:
|
||||
delete_paths = self.levenshtein_reverse_recursive(matrix,i,j-1,path_len+1)
|
||||
for delete_path in delete_paths: paths.append(delete_path + [('delete',i,j-1)])
|
||||
|
||||
if cost_equal_or_replace == cost_min:
|
||||
if cost_equal_or_replace == cost:
|
||||
equal_paths = self.levenshtein_reverse_recursive(matrix,i-1,j-1,path_len)
|
||||
for equal_path in equal_paths: paths.append(equal_path)
|
||||
else:
|
||||
replace_paths = self.levenshtein_reverse_recursive(matrix,i-1,j-1,path_len+1)
|
||||
for replace_path in replace_paths: paths.append(replace_path + [('replace',i-1,j-1)])
|
||||
|
||||
return paths
|
||||
|
||||
############################################################################
|
||||
def load_custom_wordlist(self,wordlist_file):
|
||||
self.enchant = enchant.request_pwl_dict(wordlist_file)
|
||||
|
||||
############################################################################
|
||||
# Generate source words
|
||||
def generate_words_collection(self,password):
|
||||
|
||||
if self.debug: print "[*] Generating source words for %s" % password
|
||||
|
||||
words = []
|
||||
if not self.simple_words: suggestions = self.generate_advanced_words(password)
|
||||
else: suggestions = self.generate_simple_words(password)
|
||||
|
||||
best_found_distance = sys.maxint
|
||||
|
||||
unique_suggestions = []
|
||||
for word in suggestions:
|
||||
word = word.replace(' ','')
|
||||
word = word.replace('-','')
|
||||
if not word in unique_suggestions:
|
||||
unique_suggestions.append(word)
|
||||
|
||||
# NOTE: Enchant already returned a list sorted by edit distance, so
|
||||
# we simply need to get the best edit distance of the first word
|
||||
# and compare the rest with it
|
||||
for word in unique_suggestions:
|
||||
|
||||
matrix = self.levenshtein(word,password)
|
||||
edit_distance = matrix[-1][-1]
|
||||
|
||||
# Record best edit distance and skip anything exceeding it
|
||||
if not self.more_words:
|
||||
if edit_distance < best_found_distance:
|
||||
best_found_distance = edit_distance
|
||||
elif edit_distance > best_found_distance:
|
||||
if self.verbose: print "[-] %s => {best distance exceeded: %d (%d)} => %s" % (word,edit_distance,best_found_distance,password)
|
||||
break
|
||||
|
||||
if edit_distance <= self.max_word_dist:
|
||||
if self.debug: print "[+] %s => {edit distance: %d (%d)} = > %s" % (word,edit_distance,best_found_distance,password)
|
||||
words.append((word,matrix,password))
|
||||
|
||||
if not word in self.word_stats: self.word_stats[word] = 1
|
||||
else: self.word_stats[word] += 1
|
||||
|
||||
else:
|
||||
if self.verbose: print "[-] %s => {max distance exceeded: %d (%d)} => %s" % (word,edit_distance,self.max_word_dist,password)
|
||||
|
||||
return words
|
||||
|
||||
############################################################################
|
||||
# Generate simple words
|
||||
def generate_simple_words(self,password):
|
||||
if self.word:
|
||||
return [self.word]
|
||||
else:
|
||||
return self.enchant.suggest(password)[:self.max_words]
|
||||
|
||||
############################################################################
|
||||
# Generate advanced words
|
||||
def generate_advanced_words(self,password):
|
||||
if self.word:
|
||||
return [self.word]
|
||||
else:
|
||||
# Remove non-alpha prefix and appendix
|
||||
insertion_matches = self.password_pattern["insertion"].match(password)
|
||||
if insertion_matches:
|
||||
password = insertion_matches.group('password')
|
||||
|
||||
# Email split
|
||||
email_matches = self.password_pattern["email"].match(password)
|
||||
if email_matches:
|
||||
password = email_matches.group('password')
|
||||
|
||||
# Replace common special character replacements (1337 5p34k)
|
||||
preanalysis_password = ''
|
||||
for c in password:
|
||||
if c in self.leet: preanalysis_password += self.leet[c]
|
||||
else: preanalysis_password += c
|
||||
password = preanalysis_password
|
||||
|
||||
if self.debug: "[*] Preanalysis Password: %s" % password
|
||||
|
||||
return self.enchant.suggest(password)[:self.max_words]
|
||||
|
||||
############################################################################
|
||||
# Hashcat specific offset definition 0-9,A-Z
|
||||
def int_to_hashcat(self,N):
|
||||
if N < 10: return N
|
||||
else: return chr(65+N-10)
|
||||
|
||||
def hashcat_to_int(self,N):
|
||||
if N.isdigit(): return int(N)
|
||||
else: return ord(N)-65+10
|
||||
|
||||
############################################################################
|
||||
# Generate hashcat rules
|
||||
def generate_hashcat_rules_collection(self, lev_rules_collection):
|
||||
|
||||
hashcat_rules_collection = []
|
||||
|
||||
min_hashcat_rules_length = sys.maxint
|
||||
for (word,rules,password) in lev_rules_collection:
|
||||
|
||||
if self.simple_rules:
|
||||
hashcat_rules = self.generate_simple_hashcat_rules(word,rules,password)
|
||||
else:
|
||||
hashcat_rules = self.generate_advanced_hashcat_rules(word,rules,password)
|
||||
|
||||
if not hashcat_rules == None:
|
||||
|
||||
hashcat_rules_length = len(hashcat_rules)
|
||||
|
||||
if hashcat_rules_length <= self.max_rule_len:
|
||||
hashcat_rules_collection.append((word,hashcat_rules,password))
|
||||
|
||||
# Determine minimal hashcat rules length
|
||||
if hashcat_rules_length < min_hashcat_rules_length:
|
||||
min_hashcat_rules_length = hashcat_rules_length
|
||||
else:
|
||||
if self.verbose: print "[!] %s => {max rule length exceeded: %d (%d)} => %s" % (word,hashcat_rules_length,self.max_rule_len,password)
|
||||
else:
|
||||
print "[!] Processing FAILED: %s => ;( => %s" % (word,password)
|
||||
print " Sorry about that, please report this failure to"
|
||||
print " the developer: iphelix [at] thesprawl.org"
|
||||
|
||||
|
||||
# Remove suboptimal rules
|
||||
if not self.more_rules:
|
||||
min_hashcat_rules_collection = []
|
||||
for (word,hashcat_rules,password) in hashcat_rules_collection:
|
||||
|
||||
hashcat_rules_length = len(hashcat_rules)
|
||||
if hashcat_rules_length == min_hashcat_rules_length:
|
||||
min_hashcat_rules_collection.append((word,hashcat_rules,password))
|
||||
else:
|
||||
if self.verbose: print "[!] %s => {rule length suboptimal: %d (%d)} => %s" % (word,hashcat_rules_length,min_hashcat_rules_length,password)
|
||||
|
||||
hashcat_rules_collection = min_hashcat_rules_collection
|
||||
|
||||
return hashcat_rules_collection
|
||||
|
||||
############################################################################
|
||||
# Generate basic hashcat rules using only basic insert,delete,replace rules
|
||||
def generate_simple_hashcat_rules(self,word,rules,password):
|
||||
hashcat_rules = []
|
||||
|
||||
if self.debug: print "[*] Simple Processing %s => %s" % (word,password)
|
||||
|
||||
# Dynamically apply rules to the source word
|
||||
# NOTE: Special case were word == password this would work as well.
|
||||
word_rules = word
|
||||
|
||||
for (op,p,w) in rules:
|
||||
|
||||
if self.debug: print "\t[*] Simple Processing Started: %s - %s" % (word_rules, " ".join(hashcat_rules))
|
||||
|
||||
if op == 'insert':
|
||||
hashcat_rules.append("i%s%s" % (self.int_to_hashcat(p),password[p]))
|
||||
word_rules = self.hashcat_rule['i'](word_rules,p,password[p])
|
||||
|
||||
elif op == 'delete':
|
||||
hashcat_rules.append("D%s" % self.int_to_hashcat(p))
|
||||
word_rules = self.hashcat_rule['D'](word_rules,p)
|
||||
|
||||
elif op == 'replace':
|
||||
hashcat_rules.append("o%s%s" % (self.int_to_hashcat(p),password[p]))
|
||||
word_rules = self.hashcat_rule['o'](word_rules,p,password[p])
|
||||
|
||||
if self.debug: print "\t[*] Simple Processing Ended: %s => %s => %s" % (word_rules, " ".join(hashcat_rules),password)
|
||||
|
||||
# Check if rules result in the correct password
|
||||
if word_rules == password:
|
||||
return hashcat_rules
|
||||
else:
|
||||
if self.debug: print "[!] Simple Processing FAILED: %s => %s => %s (%s)" % (word," ".join(hashcat_rules),password,word_rules)
|
||||
return None
|
||||
|
||||
|
||||
############################################################################
|
||||
# Generate advanced hashcat rules using full range of available rules
|
||||
def generate_advanced_hashcat_rules(self,word,rules,password):
|
||||
hashcat_rules = []
|
||||
|
||||
if self.debug: print "[*] Advanced Processing %s => %s" % (word,password)
|
||||
|
||||
# Dynamically apply and store rules in word_rules variable.
|
||||
# NOTE: Special case where word == password this would work as well.
|
||||
word_rules = word
|
||||
|
||||
# Generate case statistics
|
||||
password_lower = len([c for c in password if c.islower()])
|
||||
password_upper = len([c for c in password if c.isupper()])
|
||||
|
||||
for i,(op,p,w) in enumerate(rules):
|
||||
|
||||
if self.debug: print "\t[*] Advanced Processing Started: %s - %s" % (word_rules, " ".join(hashcat_rules))
|
||||
|
||||
if op == 'insert':
|
||||
hashcat_rules.append("i%s%s" % (self.int_to_hashcat(p),password[p]))
|
||||
word_rules = self.hashcat_rule['i'](word_rules,p,password[p])
|
||||
|
||||
elif op == 'delete':
|
||||
hashcat_rules.append("D%s" % self.int_to_hashcat(p))
|
||||
word_rules = self.hashcat_rule['D'](word_rules,p)
|
||||
|
||||
elif op == 'replace':
|
||||
|
||||
# Detecting global replacement such as sXY, l, u, C, c is a non
|
||||
# trivial problem because different characters may be added or
|
||||
# removed from the word by other rules. A reliable way to solve
|
||||
# this problem is to apply all of the rules the the source word
|
||||
# and keep track of its state at any given time. At the same
|
||||
# time, global replacement rules can be tested by completing
|
||||
# the rest of the rules using a simplified engine.
|
||||
|
||||
# The sequence of if statements determines the priority of rules
|
||||
|
||||
# This rule was made obsolete by a prior global replacement
|
||||
if word_rules[p] == password[p]:
|
||||
if self.debug: print "\t[*] Advanced Processing Obsolete Rule: %s - %s" % (word_rules, " ".join(hashcat_rules))
|
||||
|
||||
# Swapping rules
|
||||
elif p < len(password)-1 and p < len(word_rules)-1 and word_rules[p] == password[p+1] and word_rules[p+1] == password[p]:
|
||||
# Swap first two characters
|
||||
if p == 0 and self.generate_simple_hashcat_rules( self.hashcat_rule['k'](word_rules), rules[i+1:],password):
|
||||
hashcat_rules.append("k")
|
||||
word_rules = self.hashcat_rule['k'](word_rules)
|
||||
# Swap last two characters
|
||||
elif p == len(word_rules)-2 and self.generate_simple_hashcat_rules( self.hashcat_rule['K'](word_rules), rules[i+1:],password):
|
||||
hashcat_rules.append("K")
|
||||
word_rules = self.hashcat_rule['K'](word_rules)
|
||||
# Swap any two characters (only adjacent swapping is supported)
|
||||
elif self.generate_simple_hashcat_rules( self.hashcat_rule['*'](word_rules,p,p+1), rules[i+1:],password):
|
||||
hashcat_rules.append("*%s%s" % (self.int_to_hashcat(p),self.int_to_hashcat(p+1)))
|
||||
word_rules = self.hashcat_rule['*'](word_rules,p,p+1)
|
||||
else:
|
||||
hashcat_rules.append("o%s%s" % (self.int_to_hashcat(p),password[p]))
|
||||
word_rules = self.hashcat_rule['o'](word_rules,p,password[p])
|
||||
|
||||
# Case Toggle: Uppercased a letter
|
||||
elif word_rules[p].islower() and word_rules[p].upper() == password[p]:
|
||||
|
||||
# Toggle the case of all characters in word (mixed cases)
|
||||
if password_upper and password_lower and self.generate_simple_hashcat_rules( self.hashcat_rule['t'](word_rules), rules[i+1:],password):
|
||||
hashcat_rules.append("t")
|
||||
word_rules = self.hashcat_rule['t'](word_rules)
|
||||
|
||||
# Capitalize all letters
|
||||
elif self.generate_simple_hashcat_rules( self.hashcat_rule['u'](word_rules), rules[i+1:],password):
|
||||
hashcat_rules.append("u")
|
||||
word_rules = self.hashcat_rule['u'](word_rules)
|
||||
|
||||
# Capitalize the first letter
|
||||
elif p == 0 and self.generate_simple_hashcat_rules( self.hashcat_rule['c'](word_rules), rules[i+1:],password):
|
||||
hashcat_rules.append("c")
|
||||
word_rules = self.hashcat_rule['c'](word_rules)
|
||||
|
||||
# Toggle the case of characters at position N
|
||||
else:
|
||||
hashcat_rules.append("T%s" % self.int_to_hashcat(p))
|
||||
word_rules = self.hashcat_rule['T'](word_rules,p)
|
||||
|
||||
# Case Toggle: Lowercased a letter
|
||||
elif word_rules[p].isupper() and word_rules[p].lower() == password[p]:
|
||||
|
||||
# Toggle the case of all characters in word (mixed cases)
|
||||
if password_upper and password_lower and self.generate_simple_hashcat_rules( self.hashcat_rule['t'](word_rules), rules[i+1:],password):
|
||||
hashcat_rules.append("t")
|
||||
word_rules = self.hashcat_rule['t'](word_rules)
|
||||
|
||||
# Lowercase all letters
|
||||
elif self.generate_simple_hashcat_rules( self.hashcat_rule['l'](word_rules), rules[i+1:],password):
|
||||
hashcat_rules.append("l")
|
||||
word_rules = self.hashcat_rule['l'](word_rules)
|
||||
|
||||
# Lowercase the first found character, uppercase the rest
|
||||
elif p == 0 and self.generate_simple_hashcat_rules( self.hashcat_rule['C'](word_rules), rules[i+1:],password):
|
||||
hashcat_rules.append("C")
|
||||
word_rules = self.hashcat_rule['C'](word_rules)
|
||||
|
||||
# Toggle the case of characters at position N
|
||||
else:
|
||||
hashcat_rules.append("T%s" % self.int_to_hashcat(p))
|
||||
word_rules = self.hashcat_rule['T'](word_rules,p)
|
||||
|
||||
# Special case substitution of 'all' instances (1337 $p34k)
|
||||
elif word_rules[p].isalpha() and not password[p].isalpha() and self.generate_simple_hashcat_rules( self.hashcat_rule['s'](word_rules,word_rules[p],password[p]), rules[i+1:],password):
|
||||
|
||||
# If we have already detected this rule, then skip it thus
|
||||
# reducing total rule count.
|
||||
# BUG: Elisabeth => sE3 sl1 u o3Z sE3 => 31IZAB3TH
|
||||
#if not "s%s%s" % (word_rules[p],password[p]) in hashcat_rules:
|
||||
hashcat_rules.append("s%s%s" % (word_rules[p],password[p]))
|
||||
word_rules = self.hashcat_rule['s'](word_rules,word_rules[p],password[p])
|
||||
|
||||
# Replace next character with current
|
||||
elif p < len(password)-1 and p < len(word_rules)-1 and password[p] == password[p+1] and password[p] == word_rules[p+1]:
|
||||
hashcat_rules.append(".%s" % self.int_to_hashcat(p))
|
||||
word_rules = self.hashcat_rule['.'](word_rules,p)
|
||||
|
||||
# Replace previous character with current
|
||||
elif p > 0 and w > 0 and password[p] == password[p-1] and password[p] == word_rules[p-1]:
|
||||
hashcat_rules.append(",%s" % self.int_to_hashcat(p))
|
||||
word_rules = self.hashcat_rule[','](word_rules,p)
|
||||
|
||||
# ASCII increment
|
||||
elif ord(word_rules[p]) + 1 == ord(password[p]):
|
||||
hashcat_rules.append("+%s" % self.int_to_hashcat(p))
|
||||
word_rules = self.hashcat_rule['+'](word_rules,p)
|
||||
|
||||
# ASCII decrement
|
||||
elif ord(word_rules[p]) - 1 == ord(password[p]):
|
||||
hashcat_rules.append("-%s" % self.int_to_hashcat(p))
|
||||
word_rules = self.hashcat_rule['-'](word_rules,p)
|
||||
|
||||
# SHIFT left
|
||||
elif ord(word_rules[p]) << 1 == ord(password[p]):
|
||||
hashcat_rules.append("L%s" % self.int_to_hashcat(p))
|
||||
word_rules = self.hashcat_rule['L'](word_rules,p)
|
||||
|
||||
# SHIFT right
|
||||
elif ord(word_rules[p]) >> 1 == ord(password[p]):
|
||||
hashcat_rules.append("R%s" % self.int_to_hashcat(p))
|
||||
word_rules = self.hashcat_rule['R'](word_rules,p)
|
||||
|
||||
# Position based replacements.
|
||||
else:
|
||||
hashcat_rules.append("o%s%s" % (self.int_to_hashcat(p),password[p]))
|
||||
word_rules = self.hashcat_rule['o'](word_rules,p,password[p])
|
||||
|
||||
if self.debug: print "\t[*] Advanced Processing Ended: %s %s" % (word_rules, " ".join(hashcat_rules))
|
||||
|
||||
########################################################################
|
||||
# Prefix rules
|
||||
last_prefix = 0
|
||||
prefix_rules = list()
|
||||
for hashcat_rule in hashcat_rules:
|
||||
if hashcat_rule[0] == "i" and self.hashcat_to_int(hashcat_rule[1]) == last_prefix:
|
||||
prefix_rules.append("^%s" % hashcat_rule[2])
|
||||
last_prefix += 1
|
||||
elif len(prefix_rules):
|
||||
hashcat_rules = prefix_rules[::-1]+hashcat_rules[len(prefix_rules):]
|
||||
break
|
||||
else:
|
||||
break
|
||||
else:
|
||||
hashcat_rules = prefix_rules[::-1]+hashcat_rules[len(prefix_rules):]
|
||||
|
||||
####################################################################
|
||||
# Appendix rules
|
||||
last_appendix = len(password) - 1
|
||||
appendix_rules = list()
|
||||
for hashcat_rule in hashcat_rules[::-1]:
|
||||
if hashcat_rule[0] == "i" and self.hashcat_to_int(hashcat_rule[1]) == last_appendix:
|
||||
appendix_rules.append("$%s" % hashcat_rule[2])
|
||||
last_appendix-= 1
|
||||
elif len(appendix_rules):
|
||||
hashcat_rules = hashcat_rules[:-len(appendix_rules)]+appendix_rules[::-1]
|
||||
break
|
||||
else:
|
||||
break
|
||||
else:
|
||||
hashcat_rules = hashcat_rules[:-len(appendix_rules)]+appendix_rules[::-1]
|
||||
|
||||
####################################################################
|
||||
# Truncate left rules
|
||||
last_precut = 0
|
||||
precut_rules = list()
|
||||
for hashcat_rule in hashcat_rules:
|
||||
if hashcat_rule[0] == "D" and self.hashcat_to_int(hashcat_rule[1]) == last_precut:
|
||||
precut_rules.append("[")
|
||||
elif len(precut_rules):
|
||||
hashcat_rules = precut_rules[::-1]+hashcat_rules[len(precut_rules):]
|
||||
break
|
||||
else:
|
||||
break
|
||||
else:
|
||||
hashcat_rules = precut_rules[::-1]+hashcat_rules[len(precut_rules):]
|
||||
|
||||
####################################################################
|
||||
# Truncate right rules
|
||||
last_postcut = len(password)
|
||||
postcut_rules = list()
|
||||
for hashcat_rule in hashcat_rules[::-1]:
|
||||
|
||||
if hashcat_rule[0] == "D" and self.hashcat_to_int(hashcat_rule[1]) >= last_postcut:
|
||||
postcut_rules.append("]")
|
||||
elif len(postcut_rules):
|
||||
hashcat_rules = hashcat_rules[:-len(postcut_rules)]+postcut_rules[::-1]
|
||||
break
|
||||
else:
|
||||
break
|
||||
else:
|
||||
hashcat_rules = hashcat_rules[:-len(postcut_rules)]+postcut_rules[::-1]
|
||||
|
||||
# Check if rules result in the correct password
|
||||
if word_rules == password:
|
||||
return hashcat_rules
|
||||
else:
|
||||
if self.debug: print "[!] Advanced Processing FAILED: %s => %s => %s (%s)" % (word," ".join(hashcat_rules),password,word_rules)
|
||||
return None
|
||||
|
||||
############################################################################
|
||||
def print_hashcat_rules(self,hashcat_rules_collection):
|
||||
|
||||
for word,rules,password in hashcat_rules_collection:
|
||||
hashcat_rules_str = " ".join(rules or [':'])
|
||||
if self.verbose: print "[+] %s => %s => %s" % (word, hashcat_rules_str, password)
|
||||
|
||||
if not hashcat_rules_str in self.rule_stats: self.rule_stats[hashcat_rules_str] = 1
|
||||
else: self.rule_stats[hashcat_rules_str] += 1
|
||||
|
||||
self.output_rules_f.write("%s\n" % hashcat_rules_str)
|
||||
self.output_words_f.write("%s\n" % word)
|
||||
|
||||
############################################################################
|
||||
def verify_hashcat_rules(self,hashcat_rules_collection):
|
||||
|
||||
for word,rules,password in hashcat_rules_collection:
|
||||
|
||||
f = open("%s/test.rule" % HASHCAT_PATH,'w')
|
||||
f.write(" ".join(rules))
|
||||
f.close()
|
||||
|
||||
f = open("%s/test.word" % HASHCAT_PATH,'w')
|
||||
f.write(word)
|
||||
f.close()
|
||||
|
||||
p = subprocess.Popen(["%s/hashcat-cli64.bin" % HASHCAT_PATH,"-r","%s/test.rule" % HASHCAT_PATH,"--stdout","%s/test.word" % HASHCAT_PATH], stdout=subprocess.PIPE)
|
||||
out, err = p.communicate()
|
||||
out = out.strip()
|
||||
|
||||
if out == password:
|
||||
hashcat_rules_str = " ".join(rules or [':'])
|
||||
if self.verbose: print "[+] %s => %s => %s" % (word, hashcat_rules_str, password)
|
||||
|
||||
if not hashcat_rules_str in self.rule_stats: self.rule_stats[hashcat_rules_str] = 1
|
||||
else: self.rule_stats[hashcat_rules_str] += 1
|
||||
|
||||
self.output_rules_f.write("%s\n" % hashcat_rules_str)
|
||||
self.output_words_f.write("%s\n" % word)
|
||||
else:
|
||||
print "[!] Hashcat Verification FAILED: %s => %s => %s (%s)" % (word," ".join(rules or [':']),password,out)
|
||||
|
||||
############################################################################
|
||||
# Analyze a single password
|
||||
def analyze_password(self,password):
|
||||
if self.verbose: print "[*] Analyzing password: %s" % password
|
||||
if self.verbose: start_time = time.clock()
|
||||
|
||||
|
||||
# Skip all numeric passwords
|
||||
if password.isdigit():
|
||||
if self.verbose: print "[!] %s => {skipping numeric} => %s" % (password,password)
|
||||
self.numeric_stats_total += 1
|
||||
|
||||
# Skip passwords with less than 25% of alpha character
|
||||
# TODO: Make random word detection more reliable based on word entropy.
|
||||
elif len([c for c in password if c.isalpha()]) < len(password)/4:
|
||||
print "[!] %s => {skipping alpha less than 25%%} => %s" % (password,password)
|
||||
self.special_stats_total += 1
|
||||
|
||||
# Only check english ascii passwords for now, add more languages in the next version
|
||||
elif [c for c in password if ord(c) < 32 or ord(c) > 126]:
|
||||
if self.verbose: print "[!] %s => {skipping non ascii english} => %s" % (password,password)
|
||||
self.foreign_stats_total += 1
|
||||
|
||||
# Analyze the password
|
||||
else:
|
||||
|
||||
if not password in self.password_stats: self.password_stats[password] = 1
|
||||
else: self.password_stats[password] += 1
|
||||
|
||||
# Short-cut words already in the dictionary
|
||||
if self.enchant.check(password):
|
||||
|
||||
# Record password as a source word for stats
|
||||
if not password in self.word_stats: self.word_stats[password] = 1
|
||||
else: self.word_stats[password] += 1
|
||||
|
||||
hashcat_rules_collection = [(password,[],password)]
|
||||
|
||||
# Generate rules for words not in the dictionary
|
||||
else:
|
||||
|
||||
# Generate source words list
|
||||
words_collection = self.generate_words_collection(password)
|
||||
|
||||
# Generate levenshtein rules collection for each source word
|
||||
lev_rules_collection = []
|
||||
for word,matrix,password in words_collection:
|
||||
|
||||
# Generate multiple paths to get from word to password
|
||||
lev_rules = self.levenshtein_reverse_path(matrix,word,password)
|
||||
for lev_rule in lev_rules:
|
||||
lev_rules_collection.append((word,lev_rule,password))
|
||||
|
||||
# Generate hashcat rules collection
|
||||
hashcat_rules_collection = self.generate_hashcat_rules_collection(lev_rules_collection)
|
||||
|
||||
# Print complete for each source word for the original password
|
||||
if self.hashcat:
|
||||
self.verify_hashcat_rules(hashcat_rules_collection)
|
||||
else:
|
||||
self.print_hashcat_rules(hashcat_rules_collection)
|
||||
|
||||
if self.verbose: print "[*] Finished analysis in %.2f seconds" % (time.clock()-start_time)
|
||||
|
||||
############################################################################
|
||||
# Analyze passwords file
|
||||
def analyze_passwords_file(self,passwords_file):
|
||||
print "[*] Analyzing passwords file: %s:" % passwords_file
|
||||
|
||||
f = open(passwords_file,'r')
|
||||
|
||||
password_count = 0
|
||||
analysis_start = time.clock()
|
||||
try:
|
||||
for password in f:
|
||||
password = password.strip()
|
||||
if len(password) > 0:
|
||||
|
||||
if password_count != 0 and password_count % 1000 == 0:
|
||||
current_analysis_time = time.clock() - analysis_start
|
||||
if not self.quiet: print "[*] Processed %d passwords in %.2f seconds at the rate of %.2f p/sec" % (password_count, current_analysis_time, float(password_count)/current_analysis_time )
|
||||
|
||||
password_count += 1
|
||||
self.analyze_password(password)
|
||||
except (KeyboardInterrupt, SystemExit):
|
||||
print "\n[*] Rulegen was interrupted."
|
||||
|
||||
|
||||
analysis_time = time.clock() - analysis_start
|
||||
print "[*] Finished processing %d passwords in %.2f seconds at the rate of %.2f p/sec" % (password_count, analysis_time, float(password_count)/analysis_time )
|
||||
|
||||
password_stats_total = sum(self.password_stats.values())
|
||||
print "[*] Analyzed %d passwords (%0.2f%%)" % (password_stats_total,float(password_stats_total)*100.0/float(password_count))
|
||||
print "[-] Skipped %d all numeric passwords (%0.2f%%)" % (self.numeric_stats_total, float(self.numeric_stats_total)*100.0/float(password_stats_total))
|
||||
print "[-] Skipped %d passwords with less than 25%% alpha characters (%0.2f%%)" % (self.special_stats_total, float(self.special_stats_total)*100.0/float(password_stats_total))
|
||||
print "[-] Skipped %d passwords with non ascii characters (%0.2f%%)" % (self.foreign_stats_total, float(self.foreign_stats_total)*100.0/float(password_stats_total))
|
||||
|
||||
print "\n[*] Top 10 word statistics"
|
||||
top100_f = open("%s-top100.word" % self.basename, 'w')
|
||||
word_stats_total = sum(self.word_stats.values())
|
||||
for i,(word,count) in enumerate(sorted(self.word_stats.iteritems(), key=operator.itemgetter(1), reverse=True)[:100]):
|
||||
if i < 10: print "[+] %s - %d (%0.2f%%)" % (word, count, float(count)*100/float(word_stats_total))
|
||||
top100_f.write("%s\n" % word)
|
||||
top100_f.close()
|
||||
print "[*] Saving Top 100 words in %s-top100.word" % self.basename
|
||||
|
||||
print "\n[*] Top 10 rule statistics"
|
||||
top100_f = open("%s-top100.rule" % self.basename, 'w')
|
||||
rule_stats_total = sum(self.rule_stats.values())
|
||||
for i,(rule,count) in enumerate(sorted(self.rule_stats.iteritems(), key=operator.itemgetter(1), reverse=True)[:100]):
|
||||
if i < 10: print "[+] %s - %d (%0.2f%%)" % (rule, count, float(count)*100/float(rule_stats_total))
|
||||
top100_f.write("%s\n" % rule)
|
||||
top100_f.close()
|
||||
print "[*] Saving Top 100 rules in %s-top100.rule" % self.basename
|
||||
|
||||
print "\n[*] Top 10 password statistics"
|
||||
top100_f = open("%s-top100.password" % self.basename, 'w')
|
||||
password_stats_total = sum(self.password_stats.values())
|
||||
for i,(password,count) in enumerate(sorted(self.password_stats.iteritems(), key=operator.itemgetter(1), reverse=True)[:100]):
|
||||
if i < 10: print "[+] %s - %d (%0.2f%%)" % (password, count, float(count)*100/float(password_stats_total))
|
||||
top100_f.write("%s\n" % password)
|
||||
top100_f.close()
|
||||
print "[*] Saving Top 100 passwords in %s-top100.password" % self.basename
|
||||
|
||||
f.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
header = " _ \n"
|
||||
header += " RuleGen 0.0.1 | |\n"
|
||||
header += " _ __ __ _ ___| | _\n"
|
||||
header += " | '_ \ / _` |/ __| |/ /\n"
|
||||
header += " | |_) | (_| | (__| < \n"
|
||||
header += " | .__/ \__,_|\___|_|\_\\\n"
|
||||
header += " | | \n"
|
||||
header += " |_| iphelix@thesprawl.org\n"
|
||||
header += "\n"
|
||||
|
||||
|
||||
parser = OptionParser("%prog [options] passwords.txt", version="%prog "+VERSION)
|
||||
|
||||
parser.add_option("-b","--basename", help="Output base name. The following files will be generated: basename.words, basename.rules and basename.stats", default="analysis",metavar="rockyou")
|
||||
parser.add_option("-w","--wordlist", help="Use a custom wordlist for rule analysis.", metavar="wiki.dict")
|
||||
parser.add_option("-q", "--quiet", action="store_true", dest="quiet", default=False, help="Don't show headers.")
|
||||
|
||||
wordtune = OptionGroup(parser, "Fine tune source word generation:")
|
||||
wordtune.add_option("--maxworddist", help="Maximum word edit distance (Levenshtein)", type="int", default=10, metavar="10")
|
||||
wordtune.add_option("--maxwords", help="Maximum number of source word candidates to consider", type="int", default=5, metavar="5")
|
||||
wordtune.add_option("--morewords", help="Consider suboptimal source word candidates", action="store_true", default=False)
|
||||
wordtune.add_option("--simplewords", help="Generate simple source words for given passwords", action="store_true", default=False)
|
||||
parser.add_option_group(wordtune)
|
||||
|
||||
ruletune = OptionGroup(parser, "Fine tune rule generation:")
|
||||
ruletune.add_option("--maxrulelen", help="Maximum number of operations in a single rule", type="int", default=10, metavar="10")
|
||||
ruletune.add_option("--maxrules", help="Maximum number of rules to consider", type="int", default=5, metavar="5")
|
||||
ruletune.add_option("--morerules", help="Generate suboptimal rules", action="store_true", default=False)
|
||||
ruletune.add_option("--simplerules", help="Generate simple rules insert,delete,hashcat",action="store_true", default=False)
|
||||
parser.add_option_group(ruletune)
|
||||
|
||||
spelltune = OptionGroup(parser, "Fine tune spell checker engine:")
|
||||
spelltune.add_option("--providers", help="Comma-separated list of provider engines", default="aspell,myspell", metavar="aspell,myspell")
|
||||
parser.add_option_group(spelltune)
|
||||
|
||||
debug = OptionGroup(parser, "Debuggin options:")
|
||||
debug.add_option("-v","--verbose", help="Show verbose information.", action="store_true", default=False)
|
||||
debug.add_option("-d","--debug", help="Debug rules.", action="store_true", default=False)
|
||||
debug.add_option("--password", help="Process the last argument as a password not a file.", action="store_true", default=False)
|
||||
debug.add_option("--word", help="Use a custom word for rule analysis", metavar="Password")
|
||||
debug.add_option("--hashcat", help="Test generated rules with hashcat-cli", action="store_true", default=False)
|
||||
parser.add_option_group(debug)
|
||||
|
||||
(options, args) = parser.parse_args()
|
||||
|
||||
# Print program header
|
||||
if not options.quiet:
|
||||
print header
|
||||
|
||||
if len(args) < 1:
|
||||
parser.error("no passwords file specified")
|
||||
exit(1)
|
||||
|
||||
rulegen = RuleGen(language="en", providers=options.providers, basename=options.basename)
|
||||
|
||||
# Finetuning word generation
|
||||
rulegen.max_word_dist=options.maxworddist
|
||||
rulegen.max_words=options.maxwords
|
||||
rulegen.more_words=options.morewords
|
||||
rulegen.simple_words=options.simplewords
|
||||
|
||||
# Finetuning rule generation
|
||||
rulegen.max_rule_len=options.maxrulelen
|
||||
rulegen.max_rules=options.maxrules
|
||||
rulegen.more_rules=options.morerules
|
||||
rulegen.simple_rules=options.simplerules
|
||||
|
||||
# Debugging options
|
||||
rulegen.word = options.word
|
||||
rulegen.verbose=options.verbose
|
||||
rulegen.debug = options.debug
|
||||
rulegen.hashcat = options.hashcat
|
||||
rulegen.quiet = options.quiet
|
||||
|
||||
# Custom wordlist
|
||||
if not options.word:
|
||||
if options.wordlist: rulegen.load_custom_wordlist(options.wordlist)
|
||||
print "[*] Using Enchant '%s' module. For best results please install" % rulegen.enchant.provider.name
|
||||
print " '%s' module language dictionaries." % rulegen.enchant.provider.name
|
||||
|
||||
if not options.quiet:
|
||||
print "[*] Saving rules to %s.rule" % options.basename
|
||||
print "[*] Saving words to %s.word" % options.basename
|
||||
print "[*] Press Ctrl-C to end execution and generate statistical analysis."
|
||||
|
||||
# Analyze a single password or several passwords in a file
|
||||
if options.password: rulegen.analyze_password(args[0])
|
||||
else: rulegen.analyze_passwords_file(args[0])
|
198
statsgen.py
Executable file
198
statsgen.py
Executable file
@ -0,0 +1,198 @@
|
||||
#!/usr/bin/env python
|
||||
# StatsGen - Password Statistical Analysis tool
|
||||
#
|
||||
# This tool is part of PACK (Password Analysis and Cracking Kit)
|
||||
#
|
||||
# VERSION 0.0.2
|
||||
#
|
||||
# Copyright (C) 2013 Peter Kacherginsky
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
import sys
|
||||
import re, operator, string
|
||||
from optparse import OptionParser
|
||||
|
||||
VERSION = "0.0.2"
|
||||
|
||||
try:
|
||||
import psyco
|
||||
psyco.full()
|
||||
print "[*] Using Psyco to accelerate parsing."
|
||||
except ImportError:
|
||||
print "[?] Psyco is not available. Install Psyco on 32-bit systems for faster parsing."
|
||||
|
||||
password_counter = 0
|
||||
|
||||
# Constants
|
||||
chars_regex = list()
|
||||
chars_regex.append(('numeric',re.compile('^[0-9]+$')))
|
||||
chars_regex.append(('loweralpha',re.compile('^[a-z]+$')))
|
||||
chars_regex.append(('upperalpha',re.compile('^[A-Z]+$')))
|
||||
chars_regex.append(('mixedalpha',re.compile('^[a-zA-Z]+$')))
|
||||
chars_regex.append(('loweralphanum',re.compile('^[a-z0-9]+$')))
|
||||
chars_regex.append(('upperalphanum',re.compile('^[A-Z0-9]+$')))
|
||||
chars_regex.append(('mixedalphanum',re.compile('^[a-zA-Z0-9]+$')))
|
||||
chars_regex.append(('special',re.compile('^[^a-zA-Z0-9]+$')))
|
||||
chars_regex.append(('loweralphaspecial',re.compile('^[^A-Z0-9]+$')))
|
||||
chars_regex.append(('upperalphaspecial',re.compile('^[^a-z0-9]+$')))
|
||||
chars_regex.append(('mixedalphaspecial',re.compile('^[^0-9]+$')))
|
||||
chars_regex.append(('loweralphaspecialnum',re.compile('^[^A-Z]+$')))
|
||||
chars_regex.append(('upperalphaspecialnum',re.compile('^[^a-z]+$')))
|
||||
chars_regex.append(('mixedalphaspecialnum',re.compile('.*')))
|
||||
|
||||
masks_regex = list()
|
||||
masks_regex.append(('alldigit',re.compile('^\d+$', re.IGNORECASE)))
|
||||
masks_regex.append(('allstring',re.compile('^[a-z]+$', re.IGNORECASE)))
|
||||
masks_regex.append(('stringdigit',re.compile('^[a-z]+\d+$', re.IGNORECASE)))
|
||||
masks_regex.append(('digitstring',re.compile('^\d+[a-z]+$', re.IGNORECASE)))
|
||||
masks_regex.append(('digitstringdigit',re.compile('^\d+[a-z]+\d+$', re.IGNORECASE)))
|
||||
masks_regex.append(('stringdigitstring',re.compile('^[a-z]+\d+[a-z]+$', re.IGNORECASE)))
|
||||
masks_regex.append(('allspecial',re.compile('^[^a-z0-9]+$', re.IGNORECASE)))
|
||||
masks_regex.append(('stringspecial',re.compile('^[a-z]+[^a-z0-9]+$', re.IGNORECASE)))
|
||||
masks_regex.append(('specialstring',re.compile('^[^a-z0-9]+[a-z]+$', re.IGNORECASE)))
|
||||
masks_regex.append(('stringspecialstring',re.compile('^[a-z]+[^a-z0-9]+[a-z]+$', re.IGNORECASE)))
|
||||
masks_regex.append(('stringspecialdigit',re.compile('^[a-z]+[^a-z0-9]+\d+$', re.IGNORECASE)))
|
||||
masks_regex.append(('specialstringspecial',re.compile('^[^a-z0-9]+[a-z]+[^a-z0-9]+$', re.IGNORECASE)))
|
||||
|
||||
def length_check(password):
|
||||
return len(password)
|
||||
|
||||
def masks_check(password):
|
||||
for (name,regex) in masks_regex:
|
||||
if regex.match(password):
|
||||
return name
|
||||
else:
|
||||
return "othermask"
|
||||
|
||||
def chars_check(password):
|
||||
for (name,regex) in chars_regex:
|
||||
if regex.match(password):
|
||||
return name
|
||||
else:
|
||||
return "otherchar"
|
||||
|
||||
def advmask_check(password):
|
||||
advmask = list()
|
||||
for letter in password:
|
||||
if letter in string.digits: advmask.append("?d")
|
||||
elif letter in string.lowercase: advmask.append("?l")
|
||||
elif letter in string.uppercase: advmask.append("?u")
|
||||
else: advmask.append("?s")
|
||||
return "".join(advmask)
|
||||
|
||||
def main():
|
||||
password_length = dict()
|
||||
masks = dict()
|
||||
advmasks = dict()
|
||||
chars = dict()
|
||||
filter_counter = 0
|
||||
total_counter = 0
|
||||
|
||||
header = " _ \n"
|
||||
header += " StatsGen 0.0.2 | |\n"
|
||||
header += " _ __ __ _ ___| | _\n"
|
||||
header += " | '_ \ / _` |/ __| |/ /\n"
|
||||
header += " | |_) | (_| | (__| < \n"
|
||||
header += " | .__/ \__,_|\___|_|\_\\\n"
|
||||
header += " | | \n"
|
||||
header += " |_| iphelix@thesprawl.org\n"
|
||||
header += "\n"
|
||||
|
||||
parser = OptionParser("%prog [options] passwords.txt", version="%prog "+VERSION)
|
||||
parser.add_option("-l", "--length", dest="length_filter",help="Password length filter.",metavar="8")
|
||||
parser.add_option("-c", "--charset", dest="char_filter", help="Password charset filter.", metavar="loweralpha")
|
||||
parser.add_option("-m", "--mask", dest="mask_filter",help="Password mask filter", metavar="stringdigit")
|
||||
parser.add_option("-o", "--maskoutput", dest="mask_output",help="Save masks to a file", metavar="masks.csv")
|
||||
parser.add_option("-q", "--quiet", action="store_true", dest="quiet", default=False, help="Don't show headers.")
|
||||
(options, args) = parser.parse_args()
|
||||
|
||||
# Print program header
|
||||
if not options.quiet:
|
||||
print header
|
||||
|
||||
if len(args) != 1:
|
||||
parser.error("no passwords file specified")
|
||||
exit(1)
|
||||
|
||||
print "[*] Analyzing passwords: %s" % args[0]
|
||||
|
||||
f = open(args[0],'r')
|
||||
|
||||
for password in f:
|
||||
password = password.strip()
|
||||
total_counter += 1
|
||||
|
||||
pass_len = length_check(password)
|
||||
mask_set = masks_check(password)
|
||||
char_set = chars_check(password)
|
||||
advmask = advmask_check(password)
|
||||
|
||||
if (not options.length_filter or str(pass_len) in options.length_filter.split(',')) and \
|
||||
(not options.char_filter or char_set in options.char_filter.split(',')) and \
|
||||
(not options.mask_filter or mask_set in options.mask_filter.split(',')):
|
||||
|
||||
filter_counter += 1
|
||||
|
||||
try: password_length[pass_len] += 1
|
||||
except: password_length[pass_len] = 1
|
||||
|
||||
try: masks[mask_set] += 1
|
||||
except: masks[mask_set] = 1
|
||||
|
||||
try: chars[char_set] += 1
|
||||
except: chars[char_set] = 1
|
||||
|
||||
try: advmasks[advmask] += 1
|
||||
except: advmasks[advmask] = 1
|
||||
|
||||
f.close()
|
||||
|
||||
print "[+] Analyzing %d%% (%d/%d) passwords" % (filter_counter*100/total_counter, filter_counter, total_counter)
|
||||
print " NOTE: Statistics below is relative to the number of analyzed passwords, not total number of passwords"
|
||||
print "\n[*] Line Count Statistics..."
|
||||
for (length,count) in sorted(password_length.iteritems(), key=operator.itemgetter(1), reverse=True):
|
||||
if count*100/filter_counter > 0:
|
||||
print "[+] %25d: %02d%% (%d)" % (length, count*100/filter_counter, count)
|
||||
|
||||
print "\n[*] Mask statistics..."
|
||||
for (mask,count) in sorted(masks.iteritems(), key=operator.itemgetter(1), reverse=True):
|
||||
print "[+] %25s: %02d%% (%d)" % (mask, count*100/filter_counter, count)
|
||||
|
||||
print "\n[*] Charset statistics..."
|
||||
for (char,count) in sorted(chars.iteritems(), key=operator.itemgetter(1), reverse=True):
|
||||
print "[+] %25s: %02d%% (%d)" % (char, count*100/filter_counter, count)
|
||||
|
||||
print "\n[*] Advanced Mask statistics..."
|
||||
for (advmask,count) in sorted(advmasks.iteritems(), key=operator.itemgetter(1), reverse=True):
|
||||
if count*100/filter_counter > 0:
|
||||
print "[+] %25s: %02d%% (%d)" % (advmask, count*100/filter_counter, count)
|
||||
|
||||
if options.mask_output:
|
||||
print "\n[*] Saving Mask statistics to %s" % options.mask_output
|
||||
fmask = open(options.mask_output, "w")
|
||||
for (advmask,count) in sorted(advmasks.iteritems(), key=operator.itemgetter(1), reverse=True):
|
||||
fmask.write("%s,%d\n" % (advmask,count))
|
||||
fmask.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user