pack/rulegen.py
2013-07-16 11:41:32 -07:00

925 lines
45 KiB
Python
Executable File

#!/usr/bin/env python
# Rulegen.py - Advanced automated password rule and wordlist generator for the
# Hashcat password cracker using the Levenshtein Reverse Path
# algorithm and Enchant spell checking library.
#
# This tool is part of PACK (Password Analysis and Cracking Kit)
#
# VERSION 0.0.1
#
# Copyright (C) 2013 Peter Kacherginsky
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# CHANGELOG:
# [*] Fixed greedy substitution issue (thanks smarteam)
import sys
import re
import time
import operator
import enchant
from optparse import OptionParser, OptionGroup
VERSION = "0.0.1"
# Testing rules with hashcat --stdout
import subprocess
HASHCAT_PATH = "hashcat-0.42/"
# Rule Generator class responsible for the complete cycle of rule generation
class RuleGen:
# Initialize Rule Generator class
def __init__(self,language="en",providers="aspell,myspell",basename='analysis'):
self.enchant_broker = enchant.Broker()
self.enchant_broker.set_ordering("*",providers)
self.enchant = enchant.Dict(language, self.enchant_broker)
# Output options
self.basename = basename
self.output_rules_f = open("%s.rule" % basename, 'w')
self.output_words_f = open("%s.word" % basename, 'w')
# Finetuning word generation
self.max_word_dist = 10
self.max_words = 10
self.more_words = False
self.simple_words = False
# Finetuning rule generation
self.max_rule_len = 10
self.max_rules = 10
self.more_rules = False
self.simple_rules = False
# Debugging options
self.verbose = False
self.debug = False
self.word = None
self.quiet = False
########################################################################
# Word and Rule Statistics
self.word_stats = dict()
self.rule_stats = dict()
self.password_stats = dict()
self.numeric_stats_total = 0
self.special_stats_total = 0
self.foreign_stats_total = 0
########################################################################
# Preanalysis Password Patterns
self.password_pattern = dict()
self.password_pattern["insertion"] = re.compile('^[^a-z]*(?P<password>.+?)[^a-z]*$', re.IGNORECASE)
self.password_pattern["email"] = re.compile('^(?P<password>.+?)@[A-Z0-9.-]+\.[A-Z]{2,4}', re.IGNORECASE)
self.password_pattern["alldigits"] = re.compile('^(\d+)$', re.IGNORECASE)
self.password_pattern["allspecial"]= re.compile('^([^a-z0-9]+)$', re.IGNORECASE)
########################################################################
# Hashcat Rules Engine
self.hashcat_rule = dict()
# Dummy rule
self.hashcat_rule[':'] = lambda x: x # Do nothing
# Case rules
self.hashcat_rule["l"] = lambda x: x.lower() # Lowercase all letters
self.hashcat_rule["u"] = lambda x: x.upper() # Capitalize all letters
self.hashcat_rule["c"] = lambda x: x.capitalize() # Capitalize the first letter
self.hashcat_rule["C"] = lambda x: x[0].lower() + x[1:].upper() # Lowercase the first found character, uppercase the rest
self.hashcat_rule["t"] = lambda x: x.swapcase() # Toggle the case of all characters in word
self.hashcat_rule["T"] = lambda x,y: x[:y] + x[y].swapcase() + x[y+1:] # Toggle the case of characters at position N
self.hashcat_rule["E"] = lambda x: " ".join([i[0].upper()+i[1:] for i in x.split(" ")]) # Upper case the first letter and every letter after a space
# Rotation rules
self.hashcat_rule["r"] = lambda x: x[::-1] # Reverse the entire word
self.hashcat_rule["{"] = lambda x: x[1:]+x[0] # Rotate the word left
self.hashcat_rule["}"] = lambda x: x[-1]+x[:-1] # Rotate the word right
# Duplication rules
self.hashcat_rule["d"] = lambda x: x+x # Duplicate entire word
self.hashcat_rule["p"] = lambda x,y: x*y # Duplicate entire word N times
self.hashcat_rule["f"] = lambda x: x+x[::-1] # Duplicate word reversed
self.hashcat_rule["z"] = lambda x,y: x[0]*y+x # Duplicate first character N times
self.hashcat_rule["Z"] = lambda x,y: x+x[-1]*y # Duplicate last character N times
self.hashcat_rule["q"] = lambda x: "".join([i+i for i in x]) # Duplicate every character
self.hashcat_rule["y"] = lambda x,y: x[:y]+x # Duplicate first N characters
self.hashcat_rule["Y"] = lambda x,y: x+x[-y:] # Duplicate last N characters
# Cutting rules
self.hashcat_rule["["] = lambda x: x[1:] # Delete first character
self.hashcat_rule["]"] = lambda x: x[:-1] # Delete last character
self.hashcat_rule["D"] = lambda x,y: x[:y]+x[y+1:] # Deletes character at position N
self.hashcat_rule["'"] = lambda x,y: x[:y] # Truncate word at position N
self.hashcat_rule["x"] = lambda x,y,z: x[:y]+x[y+z:] # Delete M characters, starting at position N
self.hashcat_rule["@"] = lambda x,y: x.replace(y,'') # Purge all instances of X
# Insertion rules
self.hashcat_rule["$"] = lambda x,y: x+y # Append character to end
self.hashcat_rule["^"] = lambda x,y: y+x # Prepend character to front
self.hashcat_rule["i"] = lambda x,y,z: x[:y]+z+x[y:] # Insert character X at position N
# Replacement rules
self.hashcat_rule["o"] = lambda x,y,z: x[:y]+z+x[y+1:] # Overwrite character at position N with X
self.hashcat_rule["s"] = lambda x,y,z: x.replace(y,z) # Replace all instances of X with Y
self.hashcat_rule["L"] = lambda x,y: x[:y]+chr(ord(x[y])<<1)+x[y+1:] # Bitwise shift left character @ N
self.hashcat_rule["R"] = lambda x,y: x[:y]+chr(ord(x[y])>>1)+x[y+1:] # Bitwise shift right character @ N
self.hashcat_rule["+"] = lambda x,y: x[:y]+chr(ord(x[y])+1)+x[y+1:] # Increment character @ N by 1 ascii value
self.hashcat_rule["-"] = lambda x,y: x[:y]+chr(ord(x[y])-1)+x[y+1:] # Decrement character @ N by 1 ascii value
self.hashcat_rule["."] = lambda x,y: x[:y]+x[y+1]+x[y+1:] # Replace character @ N with value at @ N plus 1
self.hashcat_rule[","] = lambda x,y: x[:y]+x[y-1]+x[y+1:] # Replace character @ N with value at @ N minus 1
# Swappping rules
self.hashcat_rule["k"] = lambda x: x[1]+x[0]+x[2:] # Swap first two characters
self.hashcat_rule["K"] = lambda x: x[:-2]+x[-1]+x[-2] # Swap last two characters
self.hashcat_rule["*"] = lambda x,y,z: x[:y]+x[z]+x[y+1:z]+x[y]+x[z+1:] if z > y else x[:z]+x[y]+x[z+1:y]+x[z]+x[y+1:] # Swap character X with Y
########################################################################
# Common numeric and special character substitutions (1337 5p34k)
self.leet = dict()
self.leet["1"] = "i"
self.leet["2"] = "z"
self.leet["3"] = "e"
self.leet["4"] = "a"
self.leet["5"] = "s"
self.leet["6"] = "b"
self.leet["7"] = "t"
self.leet["8"] = "b"
self.leet["9"] = "g"
self.leet["0"] = "o"
self.leet["!"] = "i"
self.leet["|"] = "i"
self.leet["@"] = "a"
self.leet["$"] = "s"
self.leet["+"] = "t"
############################################################################
# Calculate Levenshtein edit path matrix
def levenshtein(self,word,password):
matrix = []
# Generate and populate the initial matrix
for i in xrange(len(password) + 1):
matrix.append([])
for j in xrange(len(word) + 1):
if i == 0:
matrix[i].append(j)
elif j == 0:
matrix[i].append(i)
else:
matrix[i].append(0)
# Calculate edit distance for each substring
for i in xrange(1,len(password) + 1):
for j in xrange(1,len(word) + 1):
if password[i-1] == word[j-1]:
matrix[i][j] = matrix[i-1][j-1]
else:
insertion = matrix[i-1][j] + 1
deletion = matrix[i][j-1] + 1
substitution = matrix[i-1][j-1] + 1
matrix[i][j] = min(insertion, deletion, substitution)
return matrix
############################################################################
# Print word X password matrix
def levenshtein_print(self,matrix,word,password):
print " %s" % " ".join(list(word))
for i,row in enumerate(matrix):
if i == 0: print " ",
else: print password[i-1],
print " ".join("%2d" % col for col in row)
############################################################################
# Reverse Levenshtein Path Algorithm by Peter Kacherginsky
# Generates a list of edit operations necessary to transform a source word
# into a password. Edit operations are recorded in the form:
# (operation, password_offset, word_offset)
# Where an operation can be either insertion, deletion or replacement.
def levenshtein_reverse_path(self,matrix,word,password):
paths = self.levenshtein_reverse_recursive(matrix,len(matrix)-1,len(matrix[0])-1,0)
return [path for path in paths if len(path) <= matrix[-1][-1]]
# Calculate reverse Levenshtein paths (recursive, depth first, short-circuited)
def levenshtein_reverse_recursive(self,matrix,i,j,path_len):
if i == 0 and j == 0 or path_len > matrix[-1][-1]:
return [[]]
else:
paths = list()
cost = matrix[i][j]
# Calculate minimum cost of each operation
cost_delete = cost_insert = cost_equal_or_replace = sys.maxint
if i > 0: cost_insert = matrix[i-1][j]
if j > 0: cost_delete = matrix[i][j-1]
if i > 0 and j > 0: cost_equal_or_replace = matrix[i-1][j-1]
cost_min = min(cost_delete, cost_insert, cost_equal_or_replace)
# Recurse through reverse path for each operation
if cost_insert == cost_min:
insert_paths = self.levenshtein_reverse_recursive(matrix,i-1,j,path_len+1)
for insert_path in insert_paths: paths.append(insert_path + [('insert',i-1,j)])
if cost_delete == cost_min:
delete_paths = self.levenshtein_reverse_recursive(matrix,i,j-1,path_len+1)
for delete_path in delete_paths: paths.append(delete_path + [('delete',i,j-1)])
if cost_equal_or_replace == cost_min:
if cost_equal_or_replace == cost:
equal_paths = self.levenshtein_reverse_recursive(matrix,i-1,j-1,path_len)
for equal_path in equal_paths: paths.append(equal_path)
else:
replace_paths = self.levenshtein_reverse_recursive(matrix,i-1,j-1,path_len+1)
for replace_path in replace_paths: paths.append(replace_path + [('replace',i-1,j-1)])
return paths
############################################################################
def load_custom_wordlist(self,wordlist_file):
self.enchant = enchant.request_pwl_dict(wordlist_file)
############################################################################
# Generate source words
def generate_words_collection(self,password):
if self.debug: print "[*] Generating source words for %s" % password
words = []
if not self.simple_words: suggestions = self.generate_advanced_words(password)
else: suggestions = self.generate_simple_words(password)
best_found_distance = sys.maxint
unique_suggestions = []
for word in suggestions:
word = word.replace(' ','')
word = word.replace('-','')
if not word in unique_suggestions:
unique_suggestions.append(word)
# NOTE: Enchant already returned a list sorted by edit distance, so
# we simply need to get the best edit distance of the first word
# and compare the rest with it
for word in unique_suggestions:
matrix = self.levenshtein(word,password)
edit_distance = matrix[-1][-1]
# Record best edit distance and skip anything exceeding it
if not self.more_words:
if edit_distance < best_found_distance:
best_found_distance = edit_distance
elif edit_distance > best_found_distance:
if self.verbose: print "[-] %s => {best distance exceeded: %d (%d)} => %s" % (word,edit_distance,best_found_distance,password)
break
if edit_distance <= self.max_word_dist:
if self.debug: print "[+] %s => {edit distance: %d (%d)} = > %s" % (word,edit_distance,best_found_distance,password)
words.append((word,matrix,password))
if not word in self.word_stats: self.word_stats[word] = 1
else: self.word_stats[word] += 1
else:
if self.verbose: print "[-] %s => {max distance exceeded: %d (%d)} => %s" % (word,edit_distance,self.max_word_dist,password)
return words
############################################################################
# Generate simple words
def generate_simple_words(self,password):
if self.word:
return [self.word]
else:
return self.enchant.suggest(password)[:self.max_words]
############################################################################
# Generate advanced words
def generate_advanced_words(self,password):
if self.word:
return [self.word]
else:
# Remove non-alpha prefix and appendix
insertion_matches = self.password_pattern["insertion"].match(password)
if insertion_matches:
password = insertion_matches.group('password')
# Email split
email_matches = self.password_pattern["email"].match(password)
if email_matches:
password = email_matches.group('password')
# Replace common special character replacements (1337 5p34k)
preanalysis_password = ''
for c in password:
if c in self.leet: preanalysis_password += self.leet[c]
else: preanalysis_password += c
password = preanalysis_password
if self.debug: "[*] Preanalysis Password: %s" % password
return self.enchant.suggest(password)[:self.max_words]
############################################################################
# Hashcat specific offset definition 0-9,A-Z
def int_to_hashcat(self,N):
if N < 10: return N
else: return chr(65+N-10)
def hashcat_to_int(self,N):
if N.isdigit(): return int(N)
else: return ord(N)-65+10
############################################################################
# Generate hashcat rules
def generate_hashcat_rules_collection(self, lev_rules_collection):
hashcat_rules_collection = []
min_hashcat_rules_length = sys.maxint
for (word,rules,password) in lev_rules_collection:
if self.simple_rules:
hashcat_rules = self.generate_simple_hashcat_rules(word,rules,password)
else:
hashcat_rules = self.generate_advanced_hashcat_rules(word,rules,password)
if not hashcat_rules == None:
hashcat_rules_length = len(hashcat_rules)
if hashcat_rules_length <= self.max_rule_len:
hashcat_rules_collection.append((word,hashcat_rules,password))
# Determine minimal hashcat rules length
if hashcat_rules_length < min_hashcat_rules_length:
min_hashcat_rules_length = hashcat_rules_length
else:
if self.verbose: print "[!] %s => {max rule length exceeded: %d (%d)} => %s" % (word,hashcat_rules_length,self.max_rule_len,password)
else:
print "[!] Processing FAILED: %s => ;( => %s" % (word,password)
print " Sorry about that, please report this failure to"
print " the developer: iphelix [at] thesprawl.org"
# Remove suboptimal rules
if not self.more_rules:
min_hashcat_rules_collection = []
for (word,hashcat_rules,password) in hashcat_rules_collection:
hashcat_rules_length = len(hashcat_rules)
if hashcat_rules_length == min_hashcat_rules_length:
min_hashcat_rules_collection.append((word,hashcat_rules,password))
else:
if self.verbose: print "[!] %s => {rule length suboptimal: %d (%d)} => %s" % (word,hashcat_rules_length,min_hashcat_rules_length,password)
hashcat_rules_collection = min_hashcat_rules_collection
return hashcat_rules_collection
############################################################################
# Generate basic hashcat rules using only basic insert,delete,replace rules
def generate_simple_hashcat_rules(self,word,rules,password):
hashcat_rules = []
if self.debug: print "[*] Simple Processing %s => %s" % (word,password)
# Dynamically apply rules to the source word
# NOTE: Special case were word == password this would work as well.
word_rules = word
for (op,p,w) in rules:
if self.debug: print "\t[*] Simple Processing Started: %s - %s" % (word_rules, " ".join(hashcat_rules))
if op == 'insert':
hashcat_rules.append("i%s%s" % (self.int_to_hashcat(p),password[p]))
word_rules = self.hashcat_rule['i'](word_rules,p,password[p])
elif op == 'delete':
hashcat_rules.append("D%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['D'](word_rules,p)
elif op == 'replace':
hashcat_rules.append("o%s%s" % (self.int_to_hashcat(p),password[p]))
word_rules = self.hashcat_rule['o'](word_rules,p,password[p])
if self.debug: print "\t[*] Simple Processing Ended: %s => %s => %s" % (word_rules, " ".join(hashcat_rules),password)
# Check if rules result in the correct password
if word_rules == password:
return hashcat_rules
else:
if self.debug: print "[!] Simple Processing FAILED: %s => %s => %s (%s)" % (word," ".join(hashcat_rules),password,word_rules)
return None
############################################################################
# Generate advanced hashcat rules using full range of available rules
def generate_advanced_hashcat_rules(self,word,rules,password):
hashcat_rules = []
if self.debug: print "[*] Advanced Processing %s => %s" % (word,password)
# Dynamically apply and store rules in word_rules variable.
# NOTE: Special case where word == password this would work as well.
word_rules = word
# Generate case statistics
password_lower = len([c for c in password if c.islower()])
password_upper = len([c for c in password if c.isupper()])
for i,(op,p,w) in enumerate(rules):
if self.debug: print "\t[*] Advanced Processing Started: %s - %s" % (word_rules, " ".join(hashcat_rules))
if op == 'insert':
hashcat_rules.append("i%s%s" % (self.int_to_hashcat(p),password[p]))
word_rules = self.hashcat_rule['i'](word_rules,p,password[p])
elif op == 'delete':
hashcat_rules.append("D%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['D'](word_rules,p)
elif op == 'replace':
# Detecting global replacement such as sXY, l, u, C, c is a non
# trivial problem because different characters may be added or
# removed from the word by other rules. A reliable way to solve
# this problem is to apply all of the rules the the source word
# and keep track of its state at any given time. At the same
# time, global replacement rules can be tested by completing
# the rest of the rules using a simplified engine.
# The sequence of if statements determines the priority of rules
# This rule was made obsolete by a prior global replacement
if word_rules[p] == password[p]:
if self.debug: print "\t[*] Advanced Processing Obsolete Rule: %s - %s" % (word_rules, " ".join(hashcat_rules))
# Swapping rules
elif p < len(password)-1 and p < len(word_rules)-1 and word_rules[p] == password[p+1] and word_rules[p+1] == password[p]:
# Swap first two characters
if p == 0 and self.generate_simple_hashcat_rules( self.hashcat_rule['k'](word_rules), rules[i+1:],password):
hashcat_rules.append("k")
word_rules = self.hashcat_rule['k'](word_rules)
# Swap last two characters
elif p == len(word_rules)-2 and self.generate_simple_hashcat_rules( self.hashcat_rule['K'](word_rules), rules[i+1:],password):
hashcat_rules.append("K")
word_rules = self.hashcat_rule['K'](word_rules)
# Swap any two characters (only adjacent swapping is supported)
elif self.generate_simple_hashcat_rules( self.hashcat_rule['*'](word_rules,p,p+1), rules[i+1:],password):
hashcat_rules.append("*%s%s" % (self.int_to_hashcat(p),self.int_to_hashcat(p+1)))
word_rules = self.hashcat_rule['*'](word_rules,p,p+1)
else:
hashcat_rules.append("o%s%s" % (self.int_to_hashcat(p),password[p]))
word_rules = self.hashcat_rule['o'](word_rules,p,password[p])
# Case Toggle: Uppercased a letter
elif word_rules[p].islower() and word_rules[p].upper() == password[p]:
# Toggle the case of all characters in word (mixed cases)
if password_upper and password_lower and self.generate_simple_hashcat_rules( self.hashcat_rule['t'](word_rules), rules[i+1:],password):
hashcat_rules.append("t")
word_rules = self.hashcat_rule['t'](word_rules)
# Capitalize all letters
elif self.generate_simple_hashcat_rules( self.hashcat_rule['u'](word_rules), rules[i+1:],password):
hashcat_rules.append("u")
word_rules = self.hashcat_rule['u'](word_rules)
# Capitalize the first letter
elif p == 0 and self.generate_simple_hashcat_rules( self.hashcat_rule['c'](word_rules), rules[i+1:],password):
hashcat_rules.append("c")
word_rules = self.hashcat_rule['c'](word_rules)
# Toggle the case of characters at position N
else:
hashcat_rules.append("T%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['T'](word_rules,p)
# Case Toggle: Lowercased a letter
elif word_rules[p].isupper() and word_rules[p].lower() == password[p]:
# Toggle the case of all characters in word (mixed cases)
if password_upper and password_lower and self.generate_simple_hashcat_rules( self.hashcat_rule['t'](word_rules), rules[i+1:],password):
hashcat_rules.append("t")
word_rules = self.hashcat_rule['t'](word_rules)
# Lowercase all letters
elif self.generate_simple_hashcat_rules( self.hashcat_rule['l'](word_rules), rules[i+1:],password):
hashcat_rules.append("l")
word_rules = self.hashcat_rule['l'](word_rules)
# Lowercase the first found character, uppercase the rest
elif p == 0 and self.generate_simple_hashcat_rules( self.hashcat_rule['C'](word_rules), rules[i+1:],password):
hashcat_rules.append("C")
word_rules = self.hashcat_rule['C'](word_rules)
# Toggle the case of characters at position N
else:
hashcat_rules.append("T%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['T'](word_rules,p)
# Special case substitution of 'all' instances (1337 $p34k)
elif word_rules[p].isalpha() and not password[p].isalpha() and self.generate_simple_hashcat_rules( self.hashcat_rule['s'](word_rules,word_rules[p],password[p]), rules[i+1:],password):
# If we have already detected this rule, then skip it thus
# reducing total rule count.
# BUG: Elisabeth => sE3 sl1 u o3Z sE3 => 31IZAB3TH
#if not "s%s%s" % (word_rules[p],password[p]) in hashcat_rules:
hashcat_rules.append("s%s%s" % (word_rules[p],password[p]))
word_rules = self.hashcat_rule['s'](word_rules,word_rules[p],password[p])
# Replace next character with current
elif p < len(password)-1 and p < len(word_rules)-1 and password[p] == password[p+1] and password[p] == word_rules[p+1]:
hashcat_rules.append(".%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['.'](word_rules,p)
# Replace previous character with current
elif p > 0 and w > 0 and password[p] == password[p-1] and password[p] == word_rules[p-1]:
hashcat_rules.append(",%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule[','](word_rules,p)
# ASCII increment
elif ord(word_rules[p]) + 1 == ord(password[p]):
hashcat_rules.append("+%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['+'](word_rules,p)
# ASCII decrement
elif ord(word_rules[p]) - 1 == ord(password[p]):
hashcat_rules.append("-%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['-'](word_rules,p)
# SHIFT left
elif ord(word_rules[p]) << 1 == ord(password[p]):
hashcat_rules.append("L%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['L'](word_rules,p)
# SHIFT right
elif ord(word_rules[p]) >> 1 == ord(password[p]):
hashcat_rules.append("R%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['R'](word_rules,p)
# Position based replacements.
else:
hashcat_rules.append("o%s%s" % (self.int_to_hashcat(p),password[p]))
word_rules = self.hashcat_rule['o'](word_rules,p,password[p])
if self.debug: print "\t[*] Advanced Processing Ended: %s %s" % (word_rules, " ".join(hashcat_rules))
########################################################################
# Prefix rules
last_prefix = 0
prefix_rules = list()
for hashcat_rule in hashcat_rules:
if hashcat_rule[0] == "i" and self.hashcat_to_int(hashcat_rule[1]) == last_prefix:
prefix_rules.append("^%s" % hashcat_rule[2])
last_prefix += 1
elif len(prefix_rules):
hashcat_rules = prefix_rules[::-1]+hashcat_rules[len(prefix_rules):]
break
else:
break
else:
hashcat_rules = prefix_rules[::-1]+hashcat_rules[len(prefix_rules):]
####################################################################
# Appendix rules
last_appendix = len(password) - 1
appendix_rules = list()
for hashcat_rule in hashcat_rules[::-1]:
if hashcat_rule[0] == "i" and self.hashcat_to_int(hashcat_rule[1]) == last_appendix:
appendix_rules.append("$%s" % hashcat_rule[2])
last_appendix-= 1
elif len(appendix_rules):
hashcat_rules = hashcat_rules[:-len(appendix_rules)]+appendix_rules[::-1]
break
else:
break
else:
hashcat_rules = hashcat_rules[:-len(appendix_rules)]+appendix_rules[::-1]
####################################################################
# Truncate left rules
last_precut = 0
precut_rules = list()
for hashcat_rule in hashcat_rules:
if hashcat_rule[0] == "D" and self.hashcat_to_int(hashcat_rule[1]) == last_precut:
precut_rules.append("[")
elif len(precut_rules):
hashcat_rules = precut_rules[::-1]+hashcat_rules[len(precut_rules):]
break
else:
break
else:
hashcat_rules = precut_rules[::-1]+hashcat_rules[len(precut_rules):]
####################################################################
# Truncate right rules
last_postcut = len(password)
postcut_rules = list()
for hashcat_rule in hashcat_rules[::-1]:
if hashcat_rule[0] == "D" and self.hashcat_to_int(hashcat_rule[1]) >= last_postcut:
postcut_rules.append("]")
elif len(postcut_rules):
hashcat_rules = hashcat_rules[:-len(postcut_rules)]+postcut_rules[::-1]
break
else:
break
else:
hashcat_rules = hashcat_rules[:-len(postcut_rules)]+postcut_rules[::-1]
# Check if rules result in the correct password
if word_rules == password:
return hashcat_rules
else:
if self.debug: print "[!] Advanced Processing FAILED: %s => %s => %s (%s)" % (word," ".join(hashcat_rules),password,word_rules)
return None
############################################################################
def print_hashcat_rules(self,hashcat_rules_collection):
for word,rules,password in hashcat_rules_collection:
hashcat_rules_str = " ".join(rules or [':'])
if self.verbose: print "[+] %s => %s => %s" % (word, hashcat_rules_str, password)
if not hashcat_rules_str in self.rule_stats: self.rule_stats[hashcat_rules_str] = 1
else: self.rule_stats[hashcat_rules_str] += 1
self.output_rules_f.write("%s\n" % hashcat_rules_str)
self.output_words_f.write("%s\n" % word)
############################################################################
def verify_hashcat_rules(self,hashcat_rules_collection):
for word,rules,password in hashcat_rules_collection:
f = open("%s/test.rule" % HASHCAT_PATH,'w')
f.write(" ".join(rules))
f.close()
f = open("%s/test.word" % HASHCAT_PATH,'w')
f.write(word)
f.close()
p = subprocess.Popen(["%s/hashcat-cli64.bin" % HASHCAT_PATH,"-r","%s/test.rule" % HASHCAT_PATH,"--stdout","%s/test.word" % HASHCAT_PATH], stdout=subprocess.PIPE)
out, err = p.communicate()
out = out.strip()
if out == password:
hashcat_rules_str = " ".join(rules or [':'])
if self.verbose: print "[+] %s => %s => %s" % (word, hashcat_rules_str, password)
if not hashcat_rules_str in self.rule_stats: self.rule_stats[hashcat_rules_str] = 1
else: self.rule_stats[hashcat_rules_str] += 1
self.output_rules_f.write("%s\n" % hashcat_rules_str)
self.output_words_f.write("%s\n" % word)
else:
print "[!] Hashcat Verification FAILED: %s => %s => %s (%s)" % (word," ".join(rules or [':']),password,out)
############################################################################
# Analyze a single password
def analyze_password(self,password):
if self.verbose: print "[*] Analyzing password: %s" % password
if self.verbose: start_time = time.clock()
# Skip all numeric passwords
if password.isdigit():
if self.verbose: print "[!] %s => {skipping numeric} => %s" % (password,password)
self.numeric_stats_total += 1
# Skip passwords with less than 25% of alpha character
# TODO: Make random word detection more reliable based on word entropy.
elif len([c for c in password if c.isalpha()]) < len(password)/4:
print "[!] %s => {skipping alpha less than 25%%} => %s" % (password,password)
self.special_stats_total += 1
# Only check english ascii passwords for now, add more languages in the next version
elif [c for c in password if ord(c) < 32 or ord(c) > 126]:
if self.verbose: print "[!] %s => {skipping non ascii english} => %s" % (password,password)
self.foreign_stats_total += 1
# Analyze the password
else:
if not password in self.password_stats: self.password_stats[password] = 1
else: self.password_stats[password] += 1
# Short-cut words already in the dictionary
if self.enchant.check(password):
# Record password as a source word for stats
if not password in self.word_stats: self.word_stats[password] = 1
else: self.word_stats[password] += 1
hashcat_rules_collection = [(password,[],password)]
# Generate rules for words not in the dictionary
else:
# Generate source words list
words_collection = self.generate_words_collection(password)
# Generate levenshtein rules collection for each source word
lev_rules_collection = []
for word,matrix,password in words_collection:
# Generate multiple paths to get from word to password
lev_rules = self.levenshtein_reverse_path(matrix,word,password)
for lev_rule in lev_rules:
lev_rules_collection.append((word,lev_rule,password))
# Generate hashcat rules collection
hashcat_rules_collection = self.generate_hashcat_rules_collection(lev_rules_collection)
# Print complete for each source word for the original password
if self.hashcat:
self.verify_hashcat_rules(hashcat_rules_collection)
else:
self.print_hashcat_rules(hashcat_rules_collection)
if self.verbose: print "[*] Finished analysis in %.2f seconds" % (time.clock()-start_time)
############################################################################
# Analyze passwords file
def analyze_passwords_file(self,passwords_file):
print "[*] Analyzing passwords file: %s:" % passwords_file
f = open(passwords_file,'r')
password_count = 0
analysis_start = time.clock()
try:
for password in f:
password = password.strip()
if len(password) > 0:
if password_count != 0 and password_count % 1000 == 0:
current_analysis_time = time.clock() - analysis_start
if not self.quiet: print "[*] Processed %d passwords in %.2f seconds at the rate of %.2f p/sec" % (password_count, current_analysis_time, float(password_count)/current_analysis_time )
password_count += 1
self.analyze_password(password)
except (KeyboardInterrupt, SystemExit):
print "\n[*] Rulegen was interrupted."
analysis_time = time.clock() - analysis_start
print "[*] Finished processing %d passwords in %.2f seconds at the rate of %.2f p/sec" % (password_count, analysis_time, float(password_count)/analysis_time )
password_stats_total = sum(self.password_stats.values())
print "[*] Analyzed %d passwords (%0.2f%%)" % (password_stats_total,float(password_stats_total)*100.0/float(password_count))
print "[-] Skipped %d all numeric passwords (%0.2f%%)" % (self.numeric_stats_total, float(self.numeric_stats_total)*100.0/float(password_stats_total))
print "[-] Skipped %d passwords with less than 25%% alpha characters (%0.2f%%)" % (self.special_stats_total, float(self.special_stats_total)*100.0/float(password_stats_total))
print "[-] Skipped %d passwords with non ascii characters (%0.2f%%)" % (self.foreign_stats_total, float(self.foreign_stats_total)*100.0/float(password_stats_total))
print "\n[*] Top 10 word statistics"
top100_f = open("%s-top100.word" % self.basename, 'w')
word_stats_total = sum(self.word_stats.values())
for i,(word,count) in enumerate(sorted(self.word_stats.iteritems(), key=operator.itemgetter(1), reverse=True)[:100]):
if i < 10: print "[+] %s - %d (%0.2f%%)" % (word, count, float(count)*100/float(word_stats_total))
top100_f.write("%s\n" % word)
top100_f.close()
print "[*] Saving Top 100 words in %s-top100.word" % self.basename
print "\n[*] Top 10 rule statistics"
top100_f = open("%s-top100.rule" % self.basename, 'w')
rule_stats_total = sum(self.rule_stats.values())
for i,(rule,count) in enumerate(sorted(self.rule_stats.iteritems(), key=operator.itemgetter(1), reverse=True)[:100]):
if i < 10: print "[+] %s - %d (%0.2f%%)" % (rule, count, float(count)*100/float(rule_stats_total))
top100_f.write("%s\n" % rule)
top100_f.close()
print "[*] Saving Top 100 rules in %s-top100.rule" % self.basename
print "\n[*] Top 10 password statistics"
top100_f = open("%s-top100.password" % self.basename, 'w')
password_stats_total = sum(self.password_stats.values())
for i,(password,count) in enumerate(sorted(self.password_stats.iteritems(), key=operator.itemgetter(1), reverse=True)[:100]):
if i < 10: print "[+] %s - %d (%0.2f%%)" % (password, count, float(count)*100/float(password_stats_total))
top100_f.write("%s\n" % password)
top100_f.close()
print "[*] Saving Top 100 passwords in %s-top100.password" % self.basename
f.close()
if __name__ == "__main__":
header = " _ \n"
header += " RuleGen 0.0.1 | |\n"
header += " _ __ __ _ ___| | _\n"
header += " | '_ \ / _` |/ __| |/ /\n"
header += " | |_) | (_| | (__| < \n"
header += " | .__/ \__,_|\___|_|\_\\\n"
header += " | | \n"
header += " |_| iphelix@thesprawl.org\n"
header += "\n"
parser = OptionParser("%prog [options] passwords.txt", version="%prog "+VERSION)
parser.add_option("-b","--basename", help="Output base name. The following files will be generated: basename.words, basename.rules and basename.stats", default="analysis",metavar="rockyou")
parser.add_option("-w","--wordlist", help="Use a custom wordlist for rule analysis.", metavar="wiki.dict")
parser.add_option("-q", "--quiet", action="store_true", dest="quiet", default=False, help="Don't show headers.")
wordtune = OptionGroup(parser, "Fine tune source word generation:")
wordtune.add_option("--maxworddist", help="Maximum word edit distance (Levenshtein)", type="int", default=10, metavar="10")
wordtune.add_option("--maxwords", help="Maximum number of source word candidates to consider", type="int", default=5, metavar="5")
wordtune.add_option("--morewords", help="Consider suboptimal source word candidates", action="store_true", default=False)
wordtune.add_option("--simplewords", help="Generate simple source words for given passwords", action="store_true", default=False)
parser.add_option_group(wordtune)
ruletune = OptionGroup(parser, "Fine tune rule generation:")
ruletune.add_option("--maxrulelen", help="Maximum number of operations in a single rule", type="int", default=10, metavar="10")
ruletune.add_option("--maxrules", help="Maximum number of rules to consider", type="int", default=5, metavar="5")
ruletune.add_option("--morerules", help="Generate suboptimal rules", action="store_true", default=False)
ruletune.add_option("--simplerules", help="Generate simple rules insert,delete,hashcat",action="store_true", default=False)
parser.add_option_group(ruletune)
spelltune = OptionGroup(parser, "Fine tune spell checker engine:")
spelltune.add_option("--providers", help="Comma-separated list of provider engines", default="aspell,myspell", metavar="aspell,myspell")
parser.add_option_group(spelltune)
debug = OptionGroup(parser, "Debuggin options:")
debug.add_option("-v","--verbose", help="Show verbose information.", action="store_true", default=False)
debug.add_option("-d","--debug", help="Debug rules.", action="store_true", default=False)
debug.add_option("--password", help="Process the last argument as a password not a file.", action="store_true", default=False)
debug.add_option("--word", help="Use a custom word for rule analysis", metavar="Password")
debug.add_option("--hashcat", help="Test generated rules with hashcat-cli", action="store_true", default=False)
parser.add_option_group(debug)
(options, args) = parser.parse_args()
# Print program header
if not options.quiet:
print header
if len(args) < 1:
parser.error("no passwords file specified")
exit(1)
rulegen = RuleGen(language="en", providers=options.providers, basename=options.basename)
# Finetuning word generation
rulegen.max_word_dist=options.maxworddist
rulegen.max_words=options.maxwords
rulegen.more_words=options.morewords
rulegen.simple_words=options.simplewords
# Finetuning rule generation
rulegen.max_rule_len=options.maxrulelen
rulegen.max_rules=options.maxrules
rulegen.more_rules=options.morerules
rulegen.simple_rules=options.simplerules
# Debugging options
rulegen.word = options.word
rulegen.verbose=options.verbose
rulegen.debug = options.debug
rulegen.hashcat = options.hashcat
rulegen.quiet = options.quiet
# Custom wordlist
if not options.word:
if options.wordlist: rulegen.load_custom_wordlist(options.wordlist)
print "[*] Using Enchant '%s' module. For best results please install" % rulegen.enchant.provider.name
print " '%s' module language dictionaries." % rulegen.enchant.provider.name
if not options.quiet:
print "[*] Saving rules to %s.rule" % options.basename
print "[*] Saving words to %s.word" % options.basename
print "[*] Press Ctrl-C to end execution and generate statistical analysis."
# Analyze a single password or several passwords in a file
if options.password: rulegen.analyze_password(args[0])
else: rulegen.analyze_passwords_file(args[0])